Quantum Computing: Programs and Systems

Wednesday, January 17, 2024

Rutgers University

Yipeng Huang

How does a computer work? electral signals delejuon. Lata anadel as bits 40-gales to work on b.ts

What are the parts of a computer?

What are our fundamental assumptions about how computers work / what computers are made of?

discrete time Ligital.

What is quantum computing?

Neu problems Liffren(t.

Sufficilit to construct.

neuroscience & pattern recognition

& plasma physics

Image sources: Wikimedia.org

Quantum chemistry & high energy physics

Computational neuroscience & pattern recognition

Fluid dynamics & plasma physics

Image sources: Wikimedia.org

	1940s	1950s	1960s	1970s	1980s	1990s	2000s	2010s
Analog continuous- time computing	Analog computers for rocket and artillery controllers.	Analog computers for field problems.	1 st transistorized analog computer.	Analog-digital hybrid computers.				
Digital discrete- time computing	Turing's Bomba.	1 st transistorized digital computer.	Moore's law projection for transistor scaling.	Dennard's scaling for transistor power density.	VLSI democratized.	FPGAs introduced.	End of Dennard's scaling. CPUs go multicore.	Cloud FPGAs: Microsoft Catapult. Amazon F1.
						Heterog	enous archite	ctures
	Stored program computer.	Microprogram ming.	Instruction set architecture.	Reduced instruction set computers.		GPUs introduced.	Nvidia introduces CUDA.	ASICs: Google TPUs. DE Shaw Research Anton.
Transistor scaling and architectural abstractions drive digital revolution, make analog alternatives irrelevant heterogenous architectu					rive tures			

Motivation: Race to practical quantum computation

Quantum algorithms for chemical simulations

- Calculate properties of molecules directly from governing equations
- Use quantum mechanical computer to simulate quantum mechanics!

Shor's quantum algorithm for factoring integers

- Factor large integers to primes in polynomial time complexity
- Surpasses any known classical algorithm taking exponential time complexity

Hundreds of algorithms @ QuantumAlgorithmZoo.org

Motivation: Race to practical quantum computation

Superconducting qubits

Trapped ion qubits

IBM	Google	Intel	Rigetti	University of Maryland / IonQ
	Goodt -			

Many research teams now competing towards more reliable and more numerous qubits.

Broad view of open challenges in quantum computer engineering

Figure 1. Overview of the quantum computer system stack. A Microarchitecture for a Superconducting Quantum Processor. Fu et al.

- A complete view of full-stack quantum computing.
- In short, challenges are in finding and building abstractions.
- In each layer, why we don't or can't have good abstractions right now.
- Recent and rapidly developing field of research.

What this class is about

Course on latest developments in quantum computer engineering

What is quantum computer engineering??

- realizing <u>quantum algorithms</u>
- on prototype quantum computers
- —a rapidly growing field!!

Goals of the course:

- build foundations for understanding quantum algorithms
- explore open-source tools for using quantum computers
- read and discuss recent developments
- build foundation for you to pursue research or to be experts in industry

Outline

- Curiosity: digital, discrete time abstractions; unconventional computing
- **Community:** welcome to class; prerequisites; introductions
- Learning: preview of the syllabus
- Expectations: reading; problem sets; programming; final project

(Taking advice from https://www.chronicle.com/article/how-to-teach-a-good-first-day-of-class/)

Outline

- Curiosity: digital, discrete time abstractions; unconventional computing
- **Community:** welcome to class; prerequisites; introductions
- Learning: preview of the syllabus
- Expectations: reading; problem sets; programming; final project

(Taking advice from https://www.chronicle.com/article/how-to-teach-a-good-first-day-of-class/)

Prerequisites

Python programming: working with Git, extending open source projects, Jupyter notebooks

Algorithms: need to have good understanding of classical algorithms before tackling quantum ones

Probability

Linear algebra: vector, matrix notation and multiplication. Matrix properties.

Complex numbers

yciatonary

Architecture: need to have solid understanding of how classical computers work before tinkering with quantum ones

(S 206 205 CS 344

CS 211

Access to iLab CS computing resources: https://resources.cs.rutgers.edu/

Useful, but not strictly required

Quantum information science course

- Bra-ket, gates, circuits, measurement, superposition, entanglement
- 2023 Fall: ECE 493/557. Soljanin. Intro to Quantum Info. Science
- 2024 Spring: Physics 421. Roy. Introduction to Quantum Computing

Quantum mechanics

• Problems and methods for quantum chemistry

Introductions via show of hands

- Majors / minors: computer science, ECE, math, physics, other
- Degree progress: MS, seniors, juniors
- Who is in 558 section? Who is in 443 section?
- Experience in algorithms: CS 344 / CS 206
- Experience in architecture: CS 211 / ECE major
- Experience in Python programming

Personal introductions

Yipeng

- Assistant professor, Rutgers, 2020 -
- Postdoc, Princeton, 2018 2020
- PhD, Columbia, 2018

Nonlinear scientific computation Quantum simulation & optimization

New and extreme workload challenges

Multicore CPUs, GPUs, FPGAs, ASICs, analog, quantum, etc.

Limitations in transistor scaling

Dennard's	Moore's law		
scaling	increasingly		
already	costly to		
ended	sustain		

Open challenges in emerging architectures:

Problem abstractions

How do you accurately solve big problems?

Programming abstractions

• Can you borrow ideas from conventional computing?

Architecture abstractions

• How to interface with the unconventional hardware?

My work in problem and programming abstractions for emerging architectures

Continuous-time analog	Accelerator chip prototype	Support for solving differential equations	Support for solving linear algebra	Support for solving nonlinear equations	Fluid dynamics application feasibility study
scientific computation	Successful hand-off to MIT, UIm University, and two companies for further research.	JSSC 2016 (co-authored).	ISCA 2016. One of twelve Micro Top Picks best architecture papers of 2016.	MICRO 2017. Micro Top Picks honorable mention.	PI for DARPA STTR phase 1 grant. Thesis nominated for ACM dissertation award.
Quantum algorithm		Assertions for quantum program patterns and bugs	Graphical model inference for quantum program simulation and analysis	Analog computing support for quantum control & measurement	
debugging & simulation		ISCA 2019. mentees placed at MICRO SRC. IBM Qiskit open- source contribution.			

Prototype continuous-time analog accelerator

Unconventional architecture hardware prototyping

Awe-inspiring	Chemistry simulations from governing equations	Shor's algorithm for factoring integers	Hundreds more near-term and far-future algorithms	
algorithms	Quantum computers as quantum mechanics simulator	Surpasses any known classical algorithm	QuantumAlgorithmZoo.org	
My work in bridging	Assertions for quantum program patterns and bugs	Graphical model inference for quantum program simulation and analysis	Analog computing support for quantum control & measurement	
software- hardware gap	ISCA 2019. IBM Qiskit open-source contribution.	ASPLOS 2021. Google Cirq simulation backend publicly available.		

Now-viable	Superconducting qubits	Trapped ion qubits	Dozens of candidate qubit technologies	
prototypes	IBM, Google, Rigetti,	lonQ, UMD,	May yet surpass current leaders in capacity and reliability	

Image sources: Lanyon and Whitfield et al., 2010, IonQ

Research here at Rutgers

- Prof. Mario Szegedy, quantum algorithms, complexity theory
- Prof. Yipeng Huang, quantum program simulation and analysis
- Prof. Zheng Zhang, quantum circuit compilation
 - Prof. Emina Soljanin, quantum communications
 - Prof. Steve Schnetzer, high energy physics and quantum computing
 Prof. Vatsan Chakram, solid state superconducting quantum devices

Welcome all to class

We welcome in this class diverse backgrounds and viewpoints spanning various dimensions:

 race, national origin, gender, sexuality, disability status, class, religious beliefs

We will treat each other with respect and strive to create a safe environment to exchange questions and ideas.

Outline

- Curiosity: digital, discrete time abstractions; unconventional computing
- **Community:** welcome to class; prerequisites; introductions
- *Learning:* preview of the syllabus
- Expectations: reading; problem sets; programming; final project

(Taking advice from https://www.chronicle.com/article/how-to-teach-a-good-first-day-of-class/)

Preview of the syllabus

- Quantum computing fundamentals: qubits, gates, circuits
- Quantum computing algorithms: simple algorithms, QFT, factoring
 - Near-term intermediate-scale quantum algorithms
 - A systems view of quantum computer engineering
 - Programming frameworks
 - Emerging languages and representations
 - Extracting success
 - Prototypes

Simulation Complacion Complación Contreterence Microsorchitectur

Shors

Grover

Outline

- Curiosity: digital, discrete time abstractions; unconventional computing
- **Community:** welcome to class; prerequisites; introductions
- Learning: preview of the syllabus
- **Expectations:** reading; problem sets; programming; final project

(Taking advice from https://www.chronicle.com/article/how-to-teach-a-good-first-day-of-class/)

Logistics

https://yipenghuang.com/teaching/2024-spring-558/

https://rutgers.instructure.com/courses/268800

Attend live, in-person

Office hours TBA \mathscr{I}

One of the few uppermost division classes you might take

• Very different expectations from any other class

Components

- Reading discussions. (12% for 558 section; 20% for 443 section). Front Grade Graded problem sets. (24% for 558 section; 40% for 443 section).
- Programming assignments; including: QAOA implementation in Google Cirq and VQE implementation in Qiskit. (24% for 558 section; 40% for 443 section Pentsch / Pentsch - Joga -
 - Final open-ended project. (40% for 558 section; 0% for 443 section).

Proposal Front Report. Z-3 statend students