Quantum computing fundamentals: State, Composition, Dynamics

Yipeng Huang

Rutgers University
January 19, 2024

Table of contents

Postulates of quantum mechanics $\left\{\begin{array}{l}\text { state } \\ \text { composicon } \\ \text { dynamos }\end{array}\right\}$
The state of a single quit
Superposition
Bloch sphere
The state of multiple quits
Tensor product
Entanglement
No-cloning theorem
The evolution of quit states

Postulates of quantum mechanics

1. State space
2. Composite systems

3. Evolution

- 4. Quantum measurement

1,2 , and 3 are linear and describe closed quantum systems. 4 is nonlinear and describes open quantum systems.

Table of contents

Postulates of quantum mechanics
The state of a single qubit
Superposition
Bloch sphere
The state of multiple qubits
Tensor product
Entanglement
No-cloning theorem
The evolution of qubit states

Quantum postulate 1: State space

The position or momentum of a physical system is described as a wavefunction
genern Assuming continuous state space:

$$
|\psi\rangle=\int_{-\infty}^{\infty} \frac{\psi(x)|x\rangle}{|x\rangle}
$$

are orthonormal

$$
\psi(x) \in \mathbb{C}
$$

- Assuming discrete state space:

spectingation

$$
\begin{gathered}
|\psi\rangle=\sum_{i=0}^{\infty} \psi\left(x_{i}\right)\left|x_{i}\right\rangle \\
\psi(x) \in \mathbb{C}
\end{gathered}
$$

Quantum postulate 1: State space

The position or momentum of a physical system is described as a wavefunction

- Assuming discrete state space:

$$
\begin{gathered}
|\psi\rangle=\sum_{i=0}^{\infty} \psi\left(x_{i}\right)\left|x_{i}\right\rangle \\
\psi(x) \in \mathbb{C}
\end{gathered}
$$

- Assuming discrete binarized state space:

$$
\begin{gathered}
|\psi\rangle=\sum_{i=0}^{1} \psi\left(x_{i}\right)\left|x_{i}\right\rangle \\
\psi(x) \in \mathbb{C}
\end{gathered}
$$

The Hadamard gate $|\psi\rangle=\alpha|0\rangle+\beta \mid 1$,

$$
\alpha, \beta<\mathbb{C}
$$

Matrix representation of Hadamard operator: $\left.\underset{\sim}{\boldsymbol{\sim}}=\underset{\substack{1 \\ \sqrt{2}}}{\mathbf{1}} \begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}}\end{array}\right]$
$-\underline{H|O\rangle}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$

- $H|1\rangle=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}}\end{array}\right]=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle$

Circuit diagram representation: (0) $\left.\left.-\left.\right|_{H}\right] \left.-\frac{1}{\sqrt{2}} \right\rvert\, 0\right)+\left.\frac{1}{\sqrt{2}}\right|_{10}$

Interference

Superposition

Amplitudes can positively and negatively interfere

- $\underset{-}{\underset{H}{H}} \boldsymbol{H}|0\rangle)=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right]\left[\begin{array}{l}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]=\left[\begin{array}{l}\frac{1}{2}+\frac{1}{2} \\ \frac{1}{2}-\frac{1}{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]=\underset{\sim}{|0\rangle}$
- $H H|1\rangle=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right]\left[\begin{array}{l}\frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}}\end{array}\right]=\left[\begin{array}{c}\frac{1}{2}-\frac{1}{2} \\ \frac{1}{2}+\frac{1}{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]=|1\rangle$

Circuit diagram representation:

$$
|00 \underbrace{-H-[H]}-| 0\rangle=|0\rangle-I-|0\rangle
$$

offset phase

Superposition

Single qubit state

- $\alpha|0\rangle+\beta|1\rangle=\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$
- Amplitudes $\alpha, \beta \in \mathbb{C}$
- $|\alpha|^{2}+|\beta|^{2}=1$
- The above constraints require that qubit operators are unitary matrices.

Many physical phenomena can be in superposition and/encode qubits

- Polarization of light in different directions
- Electron spins (Intel solid state qubits)
- Atom energy states (UMD, IonQ ion trap qubits)
- Quantized voltage and current (IBM, Google superconducting qubits)

If multiple discrete values are possible (e.g., atom energy states, voltage and current), we pick (bottom) two for the binary abstraction.

Bloch sphere

Representation of pure states of a single quit

$$
|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \cdot \sin \frac{\theta}{2}|1\rangle
$$

- θ polar angle
$|\varphi s=\cos \theta| 0)+\sin \theta \mid 1$,
- ϕ azimuthal angle

$$
=10\rangle
$$

Euler's formula

$$
\left.\theta: \pi\left|\varphi_{3}=\cos \frac{\pi}{2}\right| 0\right\rangle+\sin \frac{\pi}{2}(1)
$$

$$
e^{i \phi}=\cos \phi+i \sin ^{z} \phi 11
$$

$\left.\theta: \pi, \phi: \left.\frac{\pi}{2} \right\rvert\, \psi\right)=\cos \frac{\pi}{2}\left|0 s+e^{i \frac{\pi}{2}} \sin \frac{\pi}{2}\right|$ Figure: Source: Wikimedia

$$
=\text { i) } 10 \quad G(o b a l \text { Phase X }
$$

Bloch sphere

Representation of pure states of a single qubit

$$
|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle
$$

- θ polar angle
- ϕ azimuthal angle

Euler's formula

$$
e^{i \phi}=\cos \phi+i \sin \phi
$$

Figure: Source: Wikimedia

Bloch sphere $\left.\left|+s=\frac{1}{\sqrt{2}}(0)+\frac{1}{\pi}(0)=\cos \frac{\theta}{2}\right| 0\right)+e^{i \phi} \sin \frac{\theta}{2}(1)$ $\theta=\frac{\pi}{2}, \phi=\phi=\cos \frac{\pi}{4}(0)+e^{i \phi} \sin \frac{\pi}{4}(1)$

$$
\begin{aligned}
& |\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle \\
& \Rightarrow e^{i \phi}=\cos \phi+i \sin \phi
\end{aligned}
$$

Important locations on the Bloch sphere

Bloch sphere

$$
x=\left[\begin{array}{c}
01 \\
10
\end{array}\right] \text { "not" }
$$

$$
\begin{aligned}
&|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle R_{x}(\pi) \\
& e^{i \phi}=\cos \phi+i \sin \phi=\cos \frac{\pi}{2} I-i \sin \frac{\pi}{2} x \\
&=
\end{aligned}
$$

Rotations around the Bloch sphere

$$
\left.\left.\rightarrow R_{x}(\theta)=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} X \quad R_{x}(\pi) \right\rvert\, 0\right)
$$

$$
R_{y}(\theta)=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} \Upsilon
$$

$$
R_{z}(\theta)=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} Z
$$

Bloch sphere

$$
\begin{gathered}
|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle \\
e^{i \phi}=\cos \phi+i \sin \phi
\end{gathered}
$$

Rotations around the Bloch sphere

$$
\begin{aligned}
& R_{x}(\theta)=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} X \\
& R_{y}(\theta)=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} Y \\
& R_{z}(\theta)=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} Z
\end{aligned}
$$

Figure: Source: Wikimedia

Bloch sphere

$Z=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$

$$
|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle R_{f}(\pi)|+\rangle
$$

Rotations around the Bloch sphere

$$
e^{i \phi}=\cos \phi+i \sin \phi=\left(\cos \frac{\pi}{2} I-i \sin \frac{\pi}{2} z\right)
$$

$$
\begin{aligned}
& R_{x}(\theta)=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} X \\
& R_{y}(\theta)=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} Y
\end{aligned}
$$

$$
\underbrace{}_{z}(\theta)=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} Z
$$

Figure: Source: Wikimedia

Table of contents

Postulates of quantum mechanics
The state of a single qubit
Superposition
Bloch sphere
\sim The state of multiple qubits
\cdots Tensor product
Entanglement
No-cloning theorem
The evolution of qubit states

Quantum postulate 2: Composite systems

multiple qubits

The state space of composite systems is the tensor product of state space of component systems.

Multiple qubits: the tensor product

Tensor product (also known as Kronecker product) of state vectors

Multiple quits: the tensor product

Tensor product of unitary matrices

Circuit diagram representation:
and

Multiple qubits: the tensor product

Tensor product of state vectors

$$
\begin{aligned}
& X\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right) \otimes I|1\rangle=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \otimes\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right]= \\
& {\left[\begin{array}{l}
\frac{1}{\sqrt{2}}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\frac{1}{\sqrt{2}}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\frac{1}{\sqrt{2}}|01\rangle+\frac{1}{\sqrt{2}}|11\rangle}
\end{aligned}
$$

Circuit diagram representation:

Multiple quits: the tensor product
Reason rovitine $>$ base cave-
$>$ recursive step-

Exercise: proof by induction about the Hadamard transform

$$
\begin{aligned}
\text { Show that }|+\rangle^{\otimes n}=\frac{1}{2^{n / 2}} \sum_{m=0}^{2^{n}-1}|m\rangle \\
\underbrace{1+1 \otimes(+) \otimes \mid+3}_{n=3}
\end{aligned}=\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right) \otimes\left(\begin{array}{c}
1 / 2 \\
1 / 1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right]=\frac{1}{2 \sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{2^{3 / 2}}=\sum_{m=0}^{2^{3}-1}|m\rangle
$$

reciding assugnwent recomment: AC for introductuon

Entangled states: Bell state circuit

Bell state circuit

$$
|00\rangle \xrightarrow{H \otimes I} \frac{1}{\sqrt{2}}(|00\rangle+|10\rangle) \xrightarrow{\text { CNOT }} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]=\left|\Phi^{+}\right\rangle
$$

Can $\left|\Phi^{+}\right\rangle$be treated as the tensor product (composition) of two individual qubits?

Prove that the Bell state cannot be factored into two single-qubit states

Bell state circuit

$$
|00\rangle \xrightarrow{H \otimes I} \frac{1}{\sqrt{2}}(|00\rangle+|10\rangle) \xrightarrow{C N O T} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]=\left|\Phi^{+}\right\rangle
$$

Can $\left|\Phi^{+}\right\rangle$be treated as the tensor product (composition) of two individual qubits? No.

Bell states form an orthogonal basis set

1. $|00\rangle \xrightarrow{\mathrm{H} \otimes I} \frac{1}{\sqrt{2}}(|00\rangle+|10\rangle) \xrightarrow{\mathrm{CNOT}} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\left|\Phi^{+}\right\rangle$
2. $|01\rangle \xrightarrow{H \otimes I} \frac{1}{\sqrt{2}}(|01\rangle+|11\rangle) \xrightarrow{\mathrm{CNOT}} \frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)=\left|\Psi^{+}\right\rangle$
3. $|10\rangle \xrightarrow{\mathrm{H} \otimes I} \frac{1}{\sqrt{2}}(|00\rangle-|10\rangle) \xrightarrow{\mathrm{CNOT}} \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)=\left|\Phi^{-}\right\rangle$
4. $|11\rangle \xrightarrow{H \otimes I} \frac{1}{\sqrt{2}}(|01\rangle-|11\rangle) \xrightarrow{\text { CNOT }} \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)=\left|\Psi^{-}\right\rangle$

No-cloning theorem

There is no way to duplicate an arbitrary quantum state Suppose a cloning operation U_{c} exists. Then:

$$
\begin{aligned}
U_{c}(|\phi\rangle \otimes|\omega\rangle) & =|\phi\rangle \otimes|\phi\rangle, \\
U_{c}(|\psi\rangle \otimes|\omega\rangle) & =|\psi\rangle \otimes|\psi\rangle,
\end{aligned}
$$

for arbitrary states $|\phi\rangle,|\psi\rangle$ we wish to copy.

- The overlap of the initial states is:

$$
\langle\phi| \otimes\langle\omega||\psi\rangle \otimes|\omega\rangle=\langle\phi||\psi\rangle \cdot\langle\omega||\omega\rangle=\langle\phi||\psi\rangle
$$

No-cloning theorem

There is no way to duplicate an arbitrary quantum state Suppose a cloning operation U_{c} exists. Then:

$$
\begin{aligned}
U_{c}(|\phi\rangle \otimes|\omega\rangle) & =|\phi\rangle \otimes|\phi\rangle \\
U_{c}(|\psi\rangle \otimes|\omega\rangle) & =|\psi\rangle \otimes|\psi\rangle
\end{aligned}
$$

for arbitrary states $|\phi\rangle,|\psi\rangle$ we wish to copy.

- The overlap of the final states is:

$$
\langle\phi| \otimes\langle\phi||\psi\rangle \otimes|\psi\rangle=\langle\phi||\psi\rangle \cdot\langle\phi||\psi\rangle=(\langle\phi||\psi\rangle)^{2}
$$

- The overlap of the final states is also:

$$
\langle\phi| \otimes\langle\phi||\psi\rangle \otimes|\psi\rangle=\langle\phi| \otimes\langle\omega| U^{\dagger} U|\psi\rangle \otimes|\omega\rangle=\langle\phi| \otimes\langle\omega||\psi\rangle \otimes|\omega\rangle=\langle\phi||\psi\rangle
$$

- $(\langle\phi||\psi\rangle)^{2}=\langle\phi||\psi\rangle$, so $\langle\phi||\psi\rangle=0$, or $\langle\phi||\psi\rangle=1,|\phi\rangle$ and $|\psi\rangle$ cannot be arbitrary states as claimed.

Table of contents

Postulates of quantum mechanics
The state of a single qubit
Superposition
Bloch sphere
The state of multiple qubits
Tensor product
Entanglement
No-cloning theorem
The evolution of qubit states

Quantum postulate 3: Evolution

The time evolution of a state follows the Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=H|\psi(t)\rangle
$$

- Comes from the conservation of total energy in the closed system, one of the observables from the system state.
- Itself reflects a time-invariance.

$$
\begin{gathered}
\frac{\partial}{\partial t}|\psi(t)\rangle=\frac{-i H}{\hbar}|\psi(t)\rangle \\
|\psi(t)\rangle=e^{\frac{-i H}{\hbar}}|\psi(t)\rangle
\end{gathered}
$$

Quantum postulate 3: Evolution

The evolution of a closed quantum system is a unitary transformation.

$$
\left|\psi\left(t=t_{1}\right)\right\rangle=U\left|\psi\left(t=t_{0}\right)\right\rangle
$$

- $\left|\psi_{1}\right\rangle=U\left|\psi_{0}\right\rangle$
- In a closed quantum system, $\left\langle\psi_{1}\right|\left|\psi_{1}\right\rangle=\left\langle\psi_{0}\right| U^{\dagger} U\left|\psi_{0}\right\rangle=\left\langle\psi_{0}\right|\left|\psi_{0}\right\rangle=1$
- $U^{\dagger} U=I, U^{\dagger}=U^{-1}$; Such matrices U are unitary

Quantum postulate 3: Evolution

From unitary transformations we can show Hamiltonians in closed quantum systems must be hermitian

- $U|\psi\rangle=e^{\frac{-i H}{\hbar}}|\psi\rangle$
- $U^{\dagger}|\psi\rangle=e^{\frac{-\left(i H^{\dagger}\right)^{\dagger}}{\hbar}}|\psi\rangle$
- $U^{\dagger}|\psi\rangle=U^{-1}|\psi\rangle=e^{i \frac{i H}{\hbar}}|\psi\rangle$
- $(i H)^{\dagger}=-i H, A=i H$; such matrices A are called anti-Hermitian a.k.a. skew-Hermitian
- If $i H$ is skew-Hermitian, H is Hermitian a.k.a. self-adjoint: $H^{\dagger}=H$

