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Postulates of quantum mechanics

1. State space

2. Composite systems

3. Evolution

4. Quantum measurement

1, 2, and 3 are linear and describe closed quantum systems. 4 is nonlinear and

describes open quantum systems.
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Quantum postulate 1: State space

The position or momentum of a physical system is described as a

wavefunction

I Assuming continuous state space:

| i =
Z 1

�1
 (x) |xi dx

|xi

are orthonormal

 (x) 2 C
I Assuming discrete state space:

| i =
1X

i=0

 (xi) |xii

 (x) 2 C
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Quantum postulate 1: State space

The position or momentum of a physical system is described as a

wavefunction

I Assuming discrete state space:

| i =
1X

i=0

 (xi) |xii

 (x) 2 C
I Assuming discrete binarized state space:

| i =
1X

i=0

 (xi) |xii

 (x) 2 C
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The Hadamard gate

Matrix representation of Hadamard operator: H =
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Circuit diagram representation:
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Interference

Amplitudes can positively and negatively interfere
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Superposition

Single qubit state

I ↵ |0i+ � |1i =

↵
�

�

I Amplitudes ↵,� 2 C
I |↵|2 + |�|2 = 1

I The above constraints require that qubit operators are unitary matrices.

Many physical phenomena can be in superposition and encode qubits

I Polarization of light in different directions

I Electron spins (Intel solid state qubits)

I Atom energy states (UMD, IonQ ion trap qubits)

I Quantized voltage and current (IBM, Google superconducting qubits)

If multiple discrete values are possible (e.g., atom energy states, voltage and

current), we pick (bottom) two for the binary abstraction.
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Bloch sphere

Representation of pure states of a single

qubit

| i = cos
✓

2
|0i+ ei�

sin
✓

2
|1i

I ✓ polar angle

I � azimuthal angle

Euler’s formula

ei� = cos�+ isin�
Figure: Source: Wikimedia
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Bloch sphere

| i = cos
✓

2
|0i+ ei�

sin
✓
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|1i

ei� = cos�+ isin�

Important locations on the Bloch sphere
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Figure: Source: Wikimedia
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Bloch sphere
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Quantum postulate 2: Composite systems

The state space of composite systems is the tensor product of state space of

component systems.
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Multiple qubits: the tensor product

Tensor product (also known as Kronecker product) of state vectors
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Multiple qubits: the tensor product

Tensor product of unitary matrices
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Multiple qubits: the tensor product

Tensor product of state vectors
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Multiple qubits: the tensor product

Exercise: proof by induction about the Hadamard transform

Show that |+i⌦n = 1

2n/2

P
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n�1

m=0
|mi
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Entangled states: Bell state circuit

Bell state circuit
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Can |�+i be treated as the tensor product (composition) of two individual qubits?
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Prove that the Bell state cannot be factored into two single-qubit

states

Bell state circuit
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Can |�+i be treated as the tensor product (composition) of two individual qubits?

No.
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Bell states form an orthogonal basis set
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No-cloning theorem

There is no way to duplicate an arbitrary quantum state

Suppose a cloning operation Uc exists. Then:

I
Uc(|�i ⌦ |!i) = |�i ⌦ |�i ,

Uc(| i ⌦ |!i) = | i ⌦ | i ,

for arbitrary states |�i , | i we wish to copy.

I The overlap of the initial states is:

h�|⌦ h!| | i ⌦ |!i = h�| | i · h!| |!i = h�| | i
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No-cloning theorem

There is no way to duplicate an arbitrary quantum state

Suppose a cloning operation Uc exists. Then:

I
Uc(|�i ⌦ |!i) = |�i ⌦ |�i ,

Uc(| i ⌦ |!i) = | i ⌦ | i ,

for arbitrary states |�i , | i we wish to copy.

I The overlap of the final states is:

h�|⌦ h�| | i ⌦ | i = h�| | i · h�| | i = (h�| | i)2

I The overlap of the final states is also:

h�|⌦ h�| | i ⌦ | i = h�|⌦ h!|U†U | i ⌦ |!i = h�|⌦ h!| | i ⌦ |!i = h�| | i

I (h�| | i)2 = h�| | i, so h�| | i = 0, or h�| | i = 1, |�i and | i cannot be

arbitrary states as claimed.
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Quantum postulate 3: Evolution

The time evolution of a state follows the Schrödinger equation

i~ @
@t

| (t)i = H | (t)i

I Comes from the conservation of total energy in the closed system, one of the

observables from the system state.

I Itself reflects a time-invariance.

@

@t
| (t)i = �iH

~ | (t)i

| (t)i = e
�iH
~ | (t)i
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Quantum postulate 3: Evolution

The evolution of a closed quantum system is a unitary transformation.

| (t = t1)i = U | (t = t0)i

I | 1i = U | 0i
I In a closed quantum system, h 1| | 1i = h 0|U†U | 0i = h 0| | 0i = 1

I U†U = I, U† = U�1
; Such matrices U are unitary
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Quantum postulate 3: Evolution

From unitary transformations we can show Hamiltonians in closed

quantum systems must be hermitian

I U | i = e
�iH
~ | i

I U† | i = e
�(iH)†

~ | i
I U† | i = U�1 | i = e

iH
~ | i

I (iH)† = �iH, A = iH; such matrices A are called anti-Hermitian a.k.a.

skew-Hermitian

I If iH is skew-Hermitian, H is Hermitian a.k.a. self-adjoint: H† = H
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