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Postulates of quantum mechanics
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1. State space IW’J

2. Composite systems
3. Evolution
4. Quantum measurement

1,2, and 3 are linear and describe closed quantum systems. 4 is nonlinear and
describes open quantum systems.
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Quantum postulate 2: Composite systems

The state space of composite systems is the tensor product of state space of
component systems.
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Multiple qubits: the tensor product

Tensor product of unitary matrices
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Multiple qubits: the tensor product
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The CNOT gate
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Circuit diagram representation: U
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Entangled states: Bell state circuit

Bell state circuit

1
j00) AL, 2(\00>+y10>)% (\00>+|11>) < 8 — |ot)
1

Can |®") be treated as the tensor product (composition) of two individual qubits?
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Prove that the Bell state cannot be factored into two single-qubit
states

Bell state circuit

1
j00) AL, 2(\00>+y10>)% (\00>+|11>) < 8 — o)
1

Can |®") be treated as the tensor product (composition) of two individual qubits?
No.
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Bell states form an orthogonal basis set
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No-cloning theorem

There is no way to duplicate an arbitrary quantum state
Suppose a cloning operation U, exists. Then:
=
Uc(l) @ |w)) = [9) @ |9) ,
L U ® |w)) = ) ® ),

for arbitrary states |¢) , 1)) we wish te copy.

» The overlap of the initial states is:

(0] @ (W] |9) @ |w) = (] |¢) - (W] |w = (¢] [))
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No-cloning theorem
There is no way to duplicate an arbitrary quantum state

Suppose a cloning operation U, exists. Then:
>

Uc(l9) @ lw)\=110) @ [6)5
Ue(|¢) @ w)) =) © [9) |
forsarbitrary states |¢) , [¢) we wish to copy.

» The overlap of the final states is:

(@l ® (ol [¥) @ 1) F (ol [¥) - (@l [v) =(((d] 1v))

> The overlap of the final states is also: \

912 @lIv) o 1) = (ol (U W) o lo) = (918 (ol 14} & ) = {ol19)
> (6] [9)? = (9] ), soTg]Ju) —)orw»uw— ¢) and [¢) cannot be

arbitrarv states as claimed. 13/20
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Quantum postulate 3: Evolution

The time evolution of a state follows the Schrédinger equation
in 2 () = Hl(6)
ot N

» Comes from the conservation of total energy in the closed system, one of the
observables from the system state.

» Itself reflects a time-invariance.

0 —iH
En (1)) = - [9(t))

—iH

[¥(t) = e ()
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Quantum postulate 3: Evolution

The evolution of a closed quantum system is a unitary transformation.

[Y(t = h)) = U[y(t = t))

> |¢1) = U ¢o)
> In a closed quantum system, (11 [1h1) = (1| UTU [100) = (o] [tho) = 1
» UtU =1, U’ = U™1; Such matrices U are unitary
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Quantum postulate 3: Evolution

From unitary transformations we can show Hamiltonians in closed
quantum systems must be hermitian

—iH
> Uly) =en |¢)
— Gt
> Uly)=en |v)
iH
> Ul fy) =U"g) =en |¢)
» (iH)' = —iH, A = iH; such matrices A are called anti-Hermitian a.k.a.

skew-Hermitian
» If iH is skew-Hermitian, H is Hermitian a.k.a. self-adjoint: H'=H
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Universal classical computation

Totfoli (CCNOT) gate can represent all classical computation
(How?)
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Functional completeness

All computation on binary variables
can be represented as

flx)=y
x€{0,1}";y € {0,1}"

And Or
All Boolean expressions can be phrased g j ) out z D ot a o out

as either CNF (and of ors) or DNF (or of
ands).

out=asshb out=a || b out="'a

Various sets of logic gates are Figure: Source: CS:APP

functionally complete
> {NOT,AND,OR}
» {(NAND}
» {(NOR}

19/20



Reversible operations

Toffoli (CCNOT) gate can represent all classical computation
CCNOT implements NAND

» Write down truth table for NAND.

» Write down truth table for CCNOT.

» Feed |1) into target qubit.

Creating classical computers out of purely reversible logic is a way to push the
extremes of computing energy efficiency.
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