Quantum computing fundamentals: Composition, Dynamics

Yipeng Huang

Rutgers University
January 24, 2024

Table of contents

Postulates of quantum mechanics

The state of multiple qubits
Tensor product
Entanglement
No-cloning theorem

The evolution of qubit states
Universal classical computing

$$
\begin{aligned}
& \left\lvert\, \underline{2}=e^{i \gamma}\left(\cos \frac{\theta}{2}\left|0>t e^{i \phi} \sin \frac{\theta}{2}\right|_{1-}\right)\right. \\
& e^{i \gamma}=\cos \gamma+i \sin \gamma \\
& \left|e^{i \gamma}\right|=1
\end{aligned}
$$

Postulates of quantum mechanics

1. State space
2. Composite systems
3. Evolution
4. Quantum measurement

1,2 , and 3 are linear and describe closed quantum systems. 4 is nonlinear and describes open quantum systems.

Table of contents

Postulates of quantum mechanics

The state of multiple qubits
> Tensor product
Entanglement
No-cloning theorem

The evolution of qubit states
Universal classical computing

Quantum postulate 2: Composite systems

The state space of composite systems is the tensor product of state space of component systems.

Multiple qubits: the tensor product

Tensor product of unitary matrices
$X \otimes\left(\frac{\left.\left.\frac{1}{\sqrt{2}}|0|\right\rangle+\frac{1}{\sqrt{2}}|11\rangle\right)}{S}\left(\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right] \otimes\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]\right)\left[\begin{array}{c}0 \\ \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right]=\right.$

Circuit diagram representation:

$$
\begin{aligned}
& x(1) \\
& \left.\left.=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / 2
\end{array}\right]=\left[\begin{array}{l}
1 / \sqrt{2} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\frac{1}{\sqrt{2}} \right\rvert\, 0\right)+\frac{1}{\sqrt{2}}[1)
\end{aligned}
$$

$$
x=R_{x}(\pi)
$$

Multiple qubits: the tensor product

The CNOT gate

- CNOT $|11\rangle=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]=|10\rangle$

Circuit diagram representation:

stare
©jnomise

$$
\begin{aligned}
\frac{1}{\sqrt{2}}\left|(0)+\frac{1}{\sqrt{2}}\right|(1) & =\mid \text { as } \otimes[\text { b) } \\
& =(\alpha \mid 0)+\beta \mid 10) \infty(2 \mid 0)+\delta \mid 0) \\
& =d \gamma(00)+0 . \delta(010+1)^{2}(100+p \delta(10
\end{aligned}
$$

Entangled states: Bell state circuit

Bell state circuit

$$
|00\rangle \xrightarrow{H \otimes I} \frac{1}{\sqrt{2}}(|00\rangle+|10\rangle) \xrightarrow{\text { CNOT }} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]=\left|\Phi^{+}\right\rangle
$$

Can $\left|\Phi^{+}\right\rangle$be treated as the tensor product (composition) of two individual qubits?

Prove that the Bell state cannot be factored into two single-qubit states

Bell state circuit

$$
|00\rangle \xrightarrow{H \otimes I} \frac{1}{\sqrt{2}}(|00\rangle+|10\rangle) \xrightarrow{C N O T} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]=\left|\Phi^{+}\right\rangle
$$

Can $\left|\Phi^{+}\right\rangle$be treated as the tensor product (composition) of two individual qubits? No.

Bell states form an orthogonal basis set

1. $|00\rangle \xrightarrow{\mathrm{H} \otimes I} \frac{1}{\sqrt{2}}(|00\rangle+|10\rangle) \xrightarrow{\mathrm{CNOT}} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\left|\Phi^{+}\right\rangle$
2. $|01\rangle \xrightarrow{\mathrm{H} \otimes I} \frac{1}{\sqrt{2}}(|01\rangle+|11\rangle) \xrightarrow{\mathrm{CNOT}} \frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)=\left|\Psi^{+}\right\rangle$
3. $|10\rangle \xrightarrow{\mathrm{H} \otimes I} \frac{1}{\sqrt{2}}(|00\rangle-|10\rangle) \xrightarrow{\mathrm{CNOT}} \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)=\left|\Phi^{-}\right\rangle$
4. $|11\rangle \xrightarrow{\mathrm{H} \otimes I} \frac{1}{\sqrt{2}}(|01\rangle-|11\rangle) \xrightarrow{\text { CNOT }} \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)=\left|\Psi^{-}\right\rangle$

$$
\left(e^{i d}\right)^{*}=e^{-i \gamma}
$$

$$
\begin{aligned}
& \mid \psi,=\left[\begin{array}{l}
i \\
0
\end{array}\right] \\
& |\psi,| \psi\rangle=1 \\
& \left(\varphi, 1|\psi\rangle=(-i \quad 0)\left[\begin{array}{l}
i \\
0
\end{array}\right]=+1\right.
\end{aligned}
$$

Bell states form an orthogonal basis set

1. $|00\rangle \xrightarrow{\mathrm{H} \otimes I} \frac{1}{\sqrt{2}}(|00\rangle+|10\rangle) \xrightarrow{\mathrm{CNOT}} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\left|\Phi^{+}\right\rangle$
2. $|01\rangle \xrightarrow{\mathrm{H} \otimes I} \frac{1}{\sqrt{2}}(|01\rangle+|11\rangle) \xrightarrow{\mathrm{CNOT}} \frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)=\left|\Psi^{+}\right\rangle$
3. $|10\rangle \xrightarrow{\mathrm{H} \otimes I} \frac{1}{\sqrt{2}}(|00\rangle-|10\rangle) \xrightarrow{\mathrm{CNOT}} \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)=\left|\Phi^{-}\right\rangle$
4. $|11\rangle \xrightarrow{H \otimes I} \frac{1}{\sqrt{2}}(|01\rangle-|11\rangle) \xrightarrow{\text { CNOT }} \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)=\left|\Psi^{-}\right\rangle$

No-cloning theorem

There is no way to duplicate an arbitrary quantum state Suppose a cloning operation U_{c} exists. Then:

$$
\begin{aligned}
U_{c}(|\phi\rangle \otimes|\omega\rangle & =|\phi\rangle \otimes|\phi\rangle, \\
U_{\theta}(|\psi\rangle \otimes|\omega\rangle & =|\psi\rangle \otimes|\psi\rangle,
\end{aligned}
$$

for arbitrary states $|\phi\rangle,|\psi\rangle$ we wish to copy.

- The overlap of the initial states is:

$$
\langle\phi| \otimes\langle\omega||\psi\rangle \otimes|\omega\rangle=\langle\phi||\psi\rangle \cdot\langle\omega||\omega\rangle=\langle\phi||\psi\rangle
$$

No-cloning theorem

There is no way to duplicate an arbitrary quantum state Suppose a cloning operation U_{c} exists. Then:
-

$$
\left\{\begin{array}{l}
U_{c}(|\phi\rangle \otimes|\omega\rangle) \\
\left(U_{c}(|\psi\rangle \otimes|\omega\rangle)\right.
\end{array}\right)=\left\{\begin{array}{l}
\phi\rangle \otimes|\phi\rangle \\
|\psi\rangle \otimes|\psi\rangle
\end{array},\right.
$$

for arbitrary states $|\phi\rangle,|\psi\rangle$ we wish to copy.

- The overlap of the final states is:

$$
\langle\phi| \otimes\langle\phi||\psi\rangle \otimes|\psi\rangle=\langle\phi||\psi\rangle \cdot\langle\phi||\psi\rangle=(\langle\phi||\psi\rangle)^{2}
$$

- The overlap of the final states is also: I

$$
\langle\phi| \otimes\langle\phi||\psi\rangle \otimes|\psi\rangle=\langle\phi| \otimes\left\langle\omega \left(U^{\dagger} U|,\rangle \otimes|\omega\rangle=\langle\phi| \otimes\langle\omega||\psi\rangle \otimes|\omega\rangle=\langle\phi||\psi\rangle\right.\right.
$$

- $(\langle\phi||\psi\rangle)^{2}=\langle\phi||\psi\rangle$, so $\langle ||\psi\rangle=0$ or $\left.\langle\phi||\psi\rangle=\right\rangle|\phi\rangle$ and $|\psi\rangle$ cannot be arbitrary states as claimed.

Table of contents

Postulates of quantum mechanics

The state of multiple qubits
Tensor product
Entanglement
No-cloning theorem

The evolution of qubit states
Universal classical computing

Quantum postulate 3: Evolution

The time evolution of a state follows the Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=H|\psi(t)\rangle
$$

- Comes from the conservation of total energy in the closed system, one of the observables from the system state.
- Itself reflects a time-invariance.

$$
\begin{gathered}
\frac{\partial}{\partial t}|\psi(t)\rangle=\frac{-i H}{\hbar}|\psi(t)\rangle \\
|\psi(t)\rangle=e^{\frac{-i H}{\hbar}}|\psi(t)\rangle
\end{gathered}
$$

Quantum postulate 3: Evolution

The evolution of a closed quantum system is a unitary transformation.

$$
\left|\psi\left(t=t_{1}\right)\right\rangle=U\left|\psi\left(t=t_{0}\right)\right\rangle
$$

- $\left|\psi_{1}\right\rangle=U\left|\psi_{0}\right\rangle$
- In a closed quantum system, $\left\langle\psi_{1}\right|\left|\psi_{1}\right\rangle=\left\langle\psi_{0}\right| U^{\dagger} U\left|\psi_{0}\right\rangle=\left\langle\psi_{0}\right|\left|\psi_{0}\right\rangle=1$
- $U^{\dagger} U=I, U^{\dagger}=U^{-1}$; Such matrices U are unitary

Quantum postulate 3: Evolution

From unitary transformations we can show Hamiltonians in closed quantum systems must be hermitian

- $U|\psi\rangle=e^{\frac{-i H}{\hbar}}|\psi\rangle$
- $U^{\dagger}|\psi\rangle=e^{\frac{-\left(i H^{\dagger}\right)^{\dagger}}{\hbar}}|\psi\rangle$
- $U^{\dagger}|\psi\rangle=U^{-1}|\psi\rangle=e^{\frac{i H}{\hbar}}|\psi\rangle$
- $(i H)^{\dagger}=-i H, A=i H$; such matrices A are called anti-Hermitian a.k.a. skew-Hermitian
- If $i H$ is skew-Hermitian, H is Hermitian a.k.a. self-adjoint: $H^{\dagger}=H$

Universal classical computation

Toffoli (CCNOT) gate can represent all classical computation (How?)

Functional completeness

All computation on binary variables can be represented as

$$
\begin{gathered}
f(x)=y \\
x \in\{0,1\}^{n} ; y \in\{0,1\}^{m}
\end{gathered}
$$

All Boolean expressions can be phrased as either CNF (and of ors) or DNF (or of ands).

Various sets of logic gates are functionally complete

- \{NOT,AND,OR\}
- \{NAND\}
- \{NOR\}

Figure: Source: CS:APP

Reversible operations

Toffoli (CCNOT) gate can represent all classical computation
CCNOT implements NAND

- Write down truth table for NAND.
- Write down truth table for CCNOT.
- Feed $|1\rangle$ into target qubit.

Creating classical computers out of purely reversible logic is a way to push the extremes of computing energy efficiency.

