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Postulates of quantum mechanics

1. State space
2. Composite systems
3. Evolution
4. Quantum measurement

1, 2, and 3 are linear and describe closed quantum systems. 4 is nonlinear and
describes open quantum systems.
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Quantum postulate 2: Composite systems

The state space of composite systems is the tensor product of state space of
component systems.
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Multiple qubits: the tensor product

Tensor product of unitary matrices
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Circuit diagram representation:
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Multiple qubits: the tensor product

Tensor product of state vectors
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Circuit diagram representation:
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The CNOT gate

Matrix representation of CNOT operator:

2

664

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3

775

I CNOT |01i =

2

664

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3

775

2

664

0
1
0
0

3

775 =

2

664

0
1
0
0

3

775 = |01i

I CNOT |11i =

2

664

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3

775

2

664

0
0
0
1

3

775 =

2

664

0
0
1
0

3

775 = |10i

Circuit diagram representation:

Mobile User



Mobile User



Mobile User



9/20

Entangled states: Bell state circuit

Bell state circuit
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Can |�+i be treated as the tensor product (composition) of two individual qubits?
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Prove that the Bell state cannot be factored into two single-qubit
states

Bell state circuit

|00i H⌦I��! 1p
2

⇣
|00i+ |10i

⌘
CNOT����! 1p

2

⇣
|00i+ |11i

⌘
= 1p

2

2

664

1
0
0
1

3

775 = |�+i

Can |�+i be treated as the tensor product (composition) of two individual qubits?
No.
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Bell states form an orthogonal basis set
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Bell states form an orthogonal basis set
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No-cloning theorem

There is no way to duplicate an arbitrary quantum state
Suppose a cloning operation Uc exists. Then:
I

Uc(|�i ⌦ |!i) = |�i ⌦ |�i ,

Uc(| i ⌦ |!i) = | i ⌦ | i ,

for arbitrary states |�i , | i we wish to copy.
I The overlap of the initial states is:

h�|⌦ h!| | i ⌦ |!i = h�| | i · h!| |!i = h�| | i
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No-cloning theorem
There is no way to duplicate an arbitrary quantum state
Suppose a cloning operation Uc exists. Then:
I

Uc(|�i ⌦ |!i) = |�i ⌦ |�i ,

Uc(| i ⌦ |!i) = | i ⌦ | i ,

for arbitrary states |�i , | i we wish to copy.
I The overlap of the final states is:

h�|⌦ h�| | i ⌦ | i = h�| | i · h�| | i = (h�| | i)2

I The overlap of the final states is also:

h�|⌦ h�| | i ⌦ | i = h�|⌦ h!|U†U | i ⌦ |!i = h�|⌦ h!| | i ⌦ |!i = h�| | i

I (h�| | i)2 = h�| | i, so h�| | i = 0, or h�| | i = 1, |�i and | i cannot be
arbitrary states as claimed.
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Quantum postulate 3: Evolution

The time evolution of a state follows the Schrödinger equation

i~ @
@t

| (t)i = H | (t)i

I Comes from the conservation of total energy in the closed system, one of the
observables from the system state.

I Itself reflects a time-invariance.
@

@t
| (t)i = �iH

~ | (t)i

| (t)i = e
�iH
~ | (t)i
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Quantum postulate 3: Evolution

The evolution of a closed quantum system is a unitary transformation.

| (t = t1)i = U | (t = t0)i

I | 1i = U | 0i
I In a closed quantum system, h 1| | 1i = h 0|U†U | 0i = h 0| | 0i = 1
I U†U = I, U† = U�1; Such matrices U are unitary
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Quantum postulate 3: Evolution

From unitary transformations we can show Hamiltonians in closed
quantum systems must be hermitian
I U | i = e

�iH
~ | i

I U† | i = e
�(iH)†

~ | i
I U† | i = U�1 | i = e

iH
~ | i

I (iH)† = �iH, A = iH; such matrices A are called anti-Hermitian a.k.a.
skew-Hermitian

I If iH is skew-Hermitian, H is Hermitian a.k.a. self-adjoint: H† = H
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Universal classical computation

Toffoli (CCNOT) gate can represent all classical computation
(How?)
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Functional completeness
All computation on binary variables
can be represented as

f (x) = y

x 2 {0, 1}n; y 2 {0, 1}m

All Boolean expressions can be phrased
as either CNF (and of ors) or DNF (or of
ands).

Various sets of logic gates are
functionally complete
I {NOT,AND,OR}
I {NAND}
I {NOR}

a�
b� out�

a�
b� out� a� out�

out = a && b� out = a || b� out = !a�

And� Or� Not�

Figure: Source: CS:APP
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Reversible operations

Toffoli (CCNOT) gate can represent all classical computation
CCNOT implements NAND
I Write down truth table for NAND.
I Write down truth table for CCNOT.
I Feed |1i into target qubit.

Creating classical computers out of purely reversible logic is a way to push the
extremes of computing energy efficiency.
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