Quantum computing fundamentals: Dynamics, Measurement

Yipeng Huang

Rutgers University
January 26, 2024

Table of contents

Postulates of quantum mechanics

The state of multiple qubits No-cloning theorem

The evolution of qubit states
Universal classical computing

The measurement of qubit states

Entanglement protocol: Quantum superdense coding

Postulates of quantum mechanics

1. State space
2. Composite systems
3. Evolution

4. Quantum measurement

1,2 , and 3 are linear and describe closed quantum systems. 4 is nonlinear and describes open quantum systems.

Table of contents

Postulates of quantum mechanics

The state of multiple qubits No-cloning theorem

The evolution of qubit states
Universal classical computing

The measurement of qubit states

Entanglement protocol: Quantum superdense coding

No-cloning theorem

There is no way to duplicate an arbitrary quantum state Suppose a cloning operation U_{c} exists. Then:

$$
\begin{aligned}
U_{c}(|\phi\rangle \otimes|\omega\rangle) & =|\phi\rangle \otimes|\phi\rangle \\
U_{c}(|\psi\rangle \otimes|\omega\rangle) & =|\psi\rangle \otimes|\psi\rangle
\end{aligned}
$$

for arbitrary states $|\phi\rangle,|\psi\rangle$ we wish to copy.

- The overlap of the initial states is:

$$
\langle\phi| \otimes\langle\omega||\psi\rangle \otimes|\omega\rangle=\langle\phi||\psi\rangle \cdot\langle\omega||\omega\rangle=\langle\phi||\psi\rangle
$$

No-cloning theorem

There is no way to duplicate an arbitrary quantum state Suppose a cloning operation U_{c} exists. Then:

$$
\begin{aligned}
U_{c}(|\phi\rangle \otimes|\omega\rangle) & =|\phi\rangle \otimes|\phi\rangle \\
U_{c}(|\psi\rangle \otimes|\omega\rangle) & =|\psi\rangle \otimes|\psi\rangle
\end{aligned}
$$

for arbitrary states $|\phi\rangle,\langle\psi\rangle$ we wish to copy.

- The overlap of the final states is:

$$
\langle\phi| \otimes\langle\phi||\psi\rangle \otimes|\psi\rangle=\langle\phi||\psi\rangle \cdot\langle\phi||\psi\rangle_{\}}=(\langle\phi||\psi\rangle)^{2}
$$

- The overlap of the final states is also:

$$
\langle\phi| \otimes\langle\phi||\psi\rangle \otimes|\psi\rangle=\langle\phi| \otimes\langle\omega| U^{\dagger} \underline{U}\langle\psi\rangle \otimes|\omega\rangle=\langle\phi| \otimes\langle\omega||\psi\rangle \otimes|\omega\rangle=\langle\phi||\psi\rangle
$$

- $(\langle\phi||\psi\rangle)^{2}=\langle\phi||\psi\rangle$, so $\langle\phi||\psi\rangle=0$, or $\langle\phi||\psi\rangle=2,|\phi\rangle$ and $|\psi\rangle$ cannot be arbitrary states as claimed.

$$
\text { 虽 } 1 .
$$

\#

Table of contents

Postulates of quantum mechanics

The state of multiple qubits
No-cloning theorem

The evolution of qubit states
Universal classical computing

The measurement of qubit states

Entanglement protocol: Quantum superdense coding

Quantum postulate 3: Evolution

The time evolution of a state follows the Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=H|\psi(t)\rangle
$$

- Comes from the conser vation of total energy in the closed system, one of the observables from the s stem state.
- Itself reflects a time-invariance.
$\bigvee \frac{\partial}{\partial t}|\psi(t)\rangle=\frac{-i H}{\hbar}|\psi(t)\rangle$

Quantum postulate 3: Evolution

The evolution of a closed quantum system is a unitary transformation.

$$
\left|\psi\left(t=t_{1}\right)\right\rangle=U\left|\psi\left(t=t_{0}\right)\right\rangle
$$

- $\left|\psi_{1}\right\rangle=U\left|\psi_{0}\right\rangle$
- In a closed quantum system, $\left\langle\psi_{1}\right|\left|\psi_{1}\right\rangle=\left\langle\psi_{0}\right| U^{\dagger} U\left|\psi_{0}\right\rangle=\left\langle\psi_{0}\right|\left|\psi_{0}\right\rangle=1$
- $U^{\dagger} U=I, U^{\dagger}=U^{-1}$; Such matrices U are unitary

$$
\begin{aligned}
& S=\sqrt{z}=\left[\begin{array}{ll}
1 & 0 \\
0 & 6
\end{array}\right] \\
& S^{2}=z \\
& S(1)=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right]\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / 2
\end{array}\right] \\
& =\left[\begin{array}{l}
1 / \sqrt{2} \\
i / \sqrt{2}
\end{array}\right]=|+i\rangle \\
& S^{\boldsymbol{t}}=\left[\begin{array}{cc}
1 & 0 \\
0 & -i
\end{array}\right] \\
& S S^{1}=I \quad S^{-1}=S^{l}
\end{aligned}
$$

Quantum postulate 3: Evolution

From unitary transformations we can show Hamiltonians in closed quantum systems must be hermitian
$\omega U|\psi\rangle=e^{\frac{-i H}{\hbar}}|\psi\rangle$
$\cdots U^{\dagger}|\psi\rangle=e^{\frac{-(i H)^{\dagger}}{\hbar}}|\psi\rangle$

- $U^{\dagger}|\psi\rangle=U^{-1}|\psi\rangle=e^{\frac{i H}{\hbar}}|\psi\rangle$
- $(i H)^{\dagger}=-i H, A=i H$; such matrices A are called anti-Hermitian a.k.a. skew-Hermitian
\Rightarrow If $i H$ is skew-Hermitian, H is Hermitian a.k.a. self-adjoint $H^{\dagger}=H$

$$
\begin{aligned}
& 0 \\
& 0^{1}=0^{1} \\
& 0=01 \\
& 0 \cdot 0[q) \\
& =00^{-1}(4) \\
& =00^{-1}(4) \\
& I \| \psi\rangle
\end{aligned}
$$

Universal classical computation

Toffoli (CCNOT) gate can represent all classical computation (How?)

Functional completeness

All computation on binary variables can be represented as

$$
\begin{gathered}
f(x)=y \\
x \in\{0,1\}^{n} ; y \in\{0,1\}^{m}
\end{gathered}
$$

All Boolean expressions can be phrased as either CNF (and of ors) or DNF (or of ands).

Various sets of logic gates are functionally complete
\Rightarrow \{NOT,AND,OR\}
$\rightarrow\{$ NAND $\}$
$\rightarrow\{\mathrm{NOR}\}$

$(A \wedge B) \cup(A \cap \sim B)$

Figure: Source: CS:APP

Nand is crmplete
not as nond

$$
A D
$$

and as nand

$$
\left.{ }_{B}^{A}-D O-D\right)^{2} \cdot A A B
$$

or cas nands $A-[D)$ a $[D-A \cup B$

Reversible operations

Toffoli (CCNOT) gate can represent all classical computation
CCNOT implements NAND

- Write down truth table for NAND.
- Write down truth table for CCNOT.
- Feed $|1\rangle$ into target qubit.

Creating classical computers out of purely reversible logic is a way to push the extremes of computing energy efficiency.
an

Table of contents

Postulates of quantum mechanics
The state of multiple qubits No-cloning theorem

The evolution of qubit states
Universal classical computing

The measurement of qubit states

Entanglement protocol: Quantum superdense coding

Quantum postulate 4: Measurement

When a closed quantum system with state $|\psi\rangle$ interacts with the environment, measurement takes place:

- The probability of the post-measurement state being in state $\left|a_{n}\right\rangle$ is:

$$
\left.\left.p\left(\left|a_{n}\right\rangle\right)=\langle\psi|\left|a_{n}\right\rangle\left\langle a_{n}\right||\psi\rangle=\left|\left\langle a_{n}\right|\right| \psi\right\rangle\left.\right|^{2}\right\rangle
$$

- The state of the quantum system is then renormalized to $\frac{\left|a_{n}\right\rangle\left\langle a_{n} \| \psi\right\rangle}{\sqrt{p\left(\left|a_{n}\right\rangle\right)}}$

Let's practice this with measuring a single-qubit state.

$$
\begin{aligned}
& \left|\phi^{\prime}\right\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}(11) \\
& p(\mid(10))=\left\langle\phi^{t}\right||\cos <10|\left|\phi^{\prime}\right\rangle \\
& \left.\left.=<\Phi^{+}\left|\left[\begin{array}{ccc}
0.000 \\
0.0 \\
0.0 \\
0.0
\end{array}\right]\right|\left(\Phi^{+}\right)=|<10| \right\rvert\, \Phi^{+}\right)\left.\right|^{2}=0^{2}=\phi \\
& \left.P(\mid 1,)=<\Phi^{\prime}| | 11\right)<\left(1| | \Phi^{t}\right)=\frac{1}{2}
\end{aligned}
$$

Table of contents

Postulates of quantum mechanics

The state of multiple qubits No-cloning theorem

The evolution of qubit states
Universal classical computing

The measurement of qubit states

Entanglement protocol: Quantum superdense coding

Entangled states: Bell state circuit

Bell state circuit

$$
|00\rangle \xrightarrow{H \otimes I} \frac{1}{\sqrt{2}}(|00\rangle+|10\rangle) \xrightarrow{\text { CNOT }} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]=\left|\Phi^{+}\right\rangle
$$

Can $\left|\Phi^{+}\right\rangle$be treated as the tensor product (composition) of two individual qubits?

Prove that the Bell state cannot be factored into two single-qubit states

Bell state circuit

$$
|00\rangle \xrightarrow{H \otimes I} \frac{1}{\sqrt{2}}(|00\rangle+|10\rangle) \xrightarrow{C N O T} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]=\left|\Phi^{+}\right\rangle
$$

Can $\left|\Phi^{+}\right\rangle$be treated as the tensor product (composition) of two individual qubits? No.

Bell states form an orthogonal basis set

1. $|00\rangle \xrightarrow{\mathrm{H} \otimes I} \frac{1}{\sqrt{2}}(|00\rangle+|10\rangle) \xrightarrow{\mathrm{CNOT}} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\left|\Phi^{+}\right\rangle$
2. $|01\rangle \xrightarrow{H \otimes I} \frac{1}{\sqrt{2}}(|01\rangle+|11\rangle) \xrightarrow{\mathrm{CNOT}} \frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)=\left|\Psi^{+}\right\rangle$
3. $|10\rangle \xrightarrow{\mathrm{H} \otimes I} \frac{1}{\sqrt{2}}(|00\rangle-|10\rangle) \xrightarrow{\mathrm{CNOT}} \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)=\left|\Phi^{-}\right\rangle$
4. $|11\rangle \xrightarrow{H \otimes I} \frac{1}{\sqrt{2}}(|01\rangle-|11\rangle) \xrightarrow{\text { CNOT }} \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)=\left|\Psi^{-}\right\rangle$

Superdense coding

Transmit 2 bits of classical information by sending 1 qubit

1. Alice wishes to tell Bob two bits of information: $00,01,10$, or 11 .
2. Alice and Bob each have one qubit of a Bell pair in state

$$
|P\rangle=\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

3. Alice performs I, X, Z, or $Z X$ on her qubit; she then sends her qubit to Bob.
4. Bob measures in the Bell basis to receive 00, 01,10 , or 11 .

Superdense coding circuit
https://github.com/quantumlib/Cirq/blob/master/examples/
superdense_coding.py

Superdense coding

Transmit 2 bits of classical information by sending 1 qubit

1. Alice wishes to tell Bob two bits of information: $00,01,10$, or 11 .
2. Alice and Bob each have one qubit of a Bell pair in state

$$
|P\rangle=\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)^{.} .
$$

3. Alice performs I, X, Z, or $Z X$ on her qubit; she then sends her qubit to Bob.
4. Bob measures in the Bell basis to receive $00,01,10$, or 11 .

Alice applies different operators on her qubit so Bob measures the message

1. $|P\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \xrightarrow{I \otimes I} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \xrightarrow{\text { CNOT }} \frac{1}{\sqrt{2}}(|00\rangle+|10\rangle) \xrightarrow{H \otimes I}|00\rangle$
2. $|P\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \xrightarrow{X \otimes l} \frac{1}{\sqrt{2}}(|10\rangle+|01\rangle) \xrightarrow{\text { CNOT }} \frac{1}{\sqrt{2}}(|11\rangle+|01\rangle) \xrightarrow{H \otimes l}|01\rangle$
3. $|P\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \xrightarrow{Z \otimes I} \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \xrightarrow{\text { CNOT }} \frac{1}{\sqrt{2}}(|00\rangle-|10\rangle) \xrightarrow{H \otimes I}|10\rangle$

