C Programming: Arrays, Functions

Yipeng Huang
Rutgers University

February 1, 2024

1/14

Table of contents

Announcements
Canvas timed quiz 2 and programming assignment 1

pointers.c: A lab exercise for pointers, arrays, and memory
Lesson 6: Arrays are just places in memory
Lesson 6: 2D arrays
Lesson 7: Passing-by-value
Lesson 8: Passing-by-reference
Lesson 9: Passing an array leads to passing-by-reference
Lesson 10: How the stack works; recursion example

matMul . c: Function for matrix-matrix multiplication

2/14

Canvas timed quiz 2 and programming assignment 1

Programming assignment 1

1. Due Friday 2/9.

2. Arrays, pointers, recursion, beginning data structures.

3/14

Table of contents

Announcements
Canvas timed quiz 2 and programming assignment 1

pointers.c: A lab exercise for pointers, arrays, and memory
Lesson 6: Arrays are just places in memory
Lesson 6: 2D arrays
Lesson 7: Passing-by-value
Lesson 8: Passing-by-reference
Lesson 9: Passing an array leads to passing-by-reference
Lesson 10: How the stack works; recursion example

matMul . c: Function for matrix-matrix multiplication

4/14

Lesson 6: Arrays are just places in memory

Three types of array in C: Fixed length, variable length, heap-allocated.
name of array points to first element

stack and heap

malloc () and free ()

using pointers instead of arrays

pointer arithmetic

vV vy vVvYvYyyvVvyy

charx argv[] and char+x argv are the same thing

5/14

Lesson 6: 2D arrays

6/14

Lesson 7: Passing-by-value

Using stack and heap picture, understand how pass by value and pass by
reference are different.

» C functions are entirely pass-by-value

> swap_pass_by_values () doesn’t actually succeed in swapping two
variables.

7/14

Lesson 8: Passing-by-reference

Using stack and heap picture, understand how pass by value and pass by
reference are different.

» You can create the illusion of pass-by-reference by passing pointers

» swap_pass_by_references () does succeed in swapping two variables.

8/14

Lesson 9: Passing an array leads to passing-by-reference

9/14

Lesson 10: How the stack works; recursion example

Low addresses

Global / static data

Heap grows downward

Dynamic memory allocation

High addresses

Stack grows upward

Local variables, parameters

Table: Memory structure

10/14

Table of contents

Announcements
Canvas timed quiz 2 and programming assignment 1

pointers.c: A lab exercise for pointers, arrays, and memory
Lesson 6: Arrays are just places in memory
Lesson 6: 2D arrays
Lesson 7: Passing-by-value
Lesson 8: Passing-by-reference
Lesson 9: Passing an array leads to passing-by-reference
Lesson 10: How the stack works; recursion example

matMul . c: Function for matrix-matrix multiplication

11/14

matMul. c: Function for matrix-matrix multiplication

What to pay attention to

» How matMulProduct resultis given back to caller of function.

» How and where memory is allocated and freed.

12/14

Why matMul() is written that way

1
2
3
4
5
6
7
8

The matMul function signature in the

provided example code.

volid matMul (

) ;

unsigned int 1,
unsigned int m,
unsigned int n,
intx*x matrix_a,
intx* matrix_b,
intx* matMulProduct

A more "natural” function signature with
return. How to implement?

intxx matMul (

unsigned int 1,
unsigned int m,
unsigned int n,
intx+ matrix_a,
int** matrix_ b

13/14

Why matMul() is written that way

The matMul function signature in the Suppose we want matMul() to be in
provided example code. Caller of charge of allocating memory. How to
matMul allocates memory. implement?

void matMul (
unsigned int 1,

1 1 void matMul (

2 2 unsigned int 1,
3 unsigned int m, 3 unsigned int m,
4 unsigned int n, 4 unsigned int n,
5 int*+ matrix_a, 5 int*+ matrix_a,
6 intx*x matrix_b, 6

7 int*+ matMulProduct 7

8 8

intx*x matrix_b,
int*x* matMulProduct

14/14

I

