Basic quantum algorithms: Key exchange / Bell's inequality

Yipeng Huang
Rutgers University

February 2, 2024

Table of contents

Quantum cryptography / quantum key exchange / BB84
Entanglement protocol: Quantum superdense coding
Entanglement protocol: Quantum teleportation
The universe does not obey local realism
EPR paradox
CHSH game
Hardy's paradox
Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

Problem description
Circuit diagram and what is in the oracle
Demonstration of Deutsch-Jozsa for the $n=1$ case
Deutsch-Jozsa programs and systems

Table of contents

Quantum cryptography / quantum key exchange / BB84
Entanglement protocol: Quantum superdense coding
Entanglement protocol: Quantum teleportation
The universe does not obey local realism
EPR paradox
CHSH game
Hardy's paradox
Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

Problem description
Circuit diagram and what is in the oracle
Demonstration of Deutsch-Jozsa for the $n=1$ case
Deutsch-Jozsa programs and systems

Bell states form an orthogonal basis set

1. $|00\rangle \xrightarrow{\mathrm{H} \otimes I} \frac{1}{\sqrt{2}}(|00\rangle+|10\rangle) \xrightarrow{\mathrm{CNOT}} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\left|\Phi^{+}\right\rangle$
2. $|01\rangle \xrightarrow{\mathrm{H} \otimes I} \frac{1}{\sqrt{2}}(|01\rangle+|11\rangle) \xrightarrow{\mathrm{CNOT}} \frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)=\left|\Psi^{+}\right\rangle$
3. $|10\rangle \xrightarrow{\mathrm{H} \otimes I} \frac{1}{\sqrt{2}}(|00\rangle-|10\rangle) \xrightarrow{C N O T} \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)=\left|\Phi^{-}\right\rangle$
4. $|11\rangle \xrightarrow{H \otimes I} \frac{1}{\sqrt{2}}(|01\rangle-|11\rangle) \xrightarrow{\text { CNOT }} \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)=\left|\Psi^{-}\right\rangle$

Superdense coding

Transmit 2 bits of classical information by sending 1 qubit

1. Alice wishes to tell Bob two bits of information: 00, 01,10 , or 11 .
2. Alice and Bob each have one qubit of a Bell pair in state

$$
|P\rangle=\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

3. Alice performs I, X, Z, or $Z X$ on her qubit; she then sends her qubit to Bob.
4. Bob measures in the Bell basis to receive 00, 01, 10, or 11 .

Superdense coding circuit

```
https://github.com/quantumlib/Cirq/blob/master/examples/
superdense_coding.py
```


Superdense coding

Transmit 2 bits of classical information by sending 1 qubit

1. Alice wishes to tell Bob two bits of information: $00,01,10$, or 11 .
2. Alice and Bob each have one qubit of a Bell pair in state

$$
|P\rangle=\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)^{\top} .
$$

3. Alice performs I, X, Z, or $Z X$ on her qubit; she then sends her qubit to Bob.
4. Bob measures in the Bell basis to receive $00,01,10$, or 11 .

Alice applies different operators on her qubit so Bob measures the message

1. $|P\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \xrightarrow{I \otimes I} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \xrightarrow{C N O T} \frac{1}{\sqrt{2}}(|00\rangle+|10\rangle) \xrightarrow{H \otimes I}|00\rangle$
2. $|P\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \xrightarrow{X \otimes I} \frac{1}{\sqrt{2}}(|10\rangle+|01\rangle) \xrightarrow{C N O T} \frac{1}{\sqrt{2}}(|11\rangle+|01\rangle) \xrightarrow{H \otimes I}|01\rangle$
3. $|P\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \xrightarrow{Z \otimes l} \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \xrightarrow{\text { CNOT }} \frac{1}{\sqrt{2}}(|00\rangle-|10\rangle) \xrightarrow{H \otimes I}|10\rangle$
4. $|P\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \xrightarrow{Z X \otimes I} \frac{1}{\sqrt{2}}(-|10\rangle+|01\rangle) \xrightarrow{C N O T} \frac{1}{\sqrt{2}}(-|11\rangle+|01\rangle) \xrightarrow{\text { H } \otimes I}|111\rangle$,

Table of contents

Quantum cryptography / quantum key exchange / BB84
Entanglement protocol: Quantum superdense coding
Entanglement protocol: Quantum teleportation
The universe does not obey local realism
EPR paradox
CHSH game
Hardy's paradox
Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

Problem description
Circuit diagram and what is in the oracle
Demonstration of Deutsch-Jozsa for the $n=1$ case
Deutsch-Jozsa programs and systems

Quantum teleportation

"Teleport" a qubit state by transmitting classical information

1. Alice wishes to give Bob a qubit state $|Q\rangle$.
2. Alice and Bob each have one qubit of a Bell pair in state $|P\rangle$.
3. Alice first entangles $|Q\rangle$ and $|P\rangle$; then, she measures her local two qubits.
4. Alice tells Bob (via classical means) her two-bit measurement result.
5. Bob uses Alice's two bits to perform I, X, Z, or $Z X$ on his qubit to obtain $|Q\rangle$.

Depending on if Alice measures 00, 01,10 , or 11 , Bob applies I, X, Z, or ZX to recover $|Q\rangle$

$$
\begin{aligned}
|Q\rangle \otimes|P\rangle & =(\alpha|0\rangle+\beta|1\rangle) \otimes \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
& =\frac{\alpha}{\sqrt{2}}|0\rangle(|00\rangle+|11\rangle)+\frac{\beta}{\sqrt{2}}|1\rangle(|00\rangle+|11\rangle)
\end{aligned}
$$

$$
\xrightarrow{\mathrm{CNOT}_{0,1}} \frac{\alpha}{\sqrt{2}}|0\rangle(|00\rangle+|11\rangle)+\frac{\beta}{\sqrt{2}}|1\rangle(|10\rangle+|01\rangle
$$

$$
\xrightarrow{H \otimes I \otimes I} \frac{\alpha}{2}(|0\rangle+|1\rangle)(|00\rangle+|11\rangle)+\frac{\beta}{2}(|0\rangle-|1\rangle)(|10\rangle+|01\rangle)
$$

$$
=\frac{1}{2}|00\rangle(\alpha|0\rangle+\beta|1\rangle) \text { Alice measures } 00 \text { so Bob applies I }
$$

$$
+\frac{1}{2}|01\rangle(\alpha|1\rangle+\beta|0\rangle) \text { Alice measures } 01 \text { so Bob applies } X
$$

$$
+\frac{1}{2}|10\rangle(\alpha|0\rangle-\beta|1\rangle) \text { Alice measures } 10 \text { so Bob applies } \mathrm{Z}
$$

$$
+\frac{1}{2}|11\rangle(\alpha|1\rangle-\beta|0\rangle) \text { Alice measures } 11 \text { so Bob applies } \mathrm{ZX}
$$

Table of contents

Quantum cryptography / quantum key exchange / BB84
Entanglement protocol: Quantum superdense coding
Entanglement protocol: Quantum teleportation
The universe does not obey local realism
EPR paradox
CHSH game
Hardy's paradox
Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

Problem description
Circuit diagram and what is in the oracle
Demonstration of Deutsch-Jozsa for the $n=1$ case
Deutsch-Jozsa programs and systems

EPR paradox

- When quantum physics was first discovered, the mathematics of entanglement led to shocking conclusions.
- If you can keep systems coherent (isolated), they can exhibit superposition and entanglement.
- Einstein and others: there shouldn't be "spooky action at a distance" so there
- must be some local hidden-variable. The task was then to prove or disprove local hidden-variables.
- But protocols and experiments like Hardy's, GHZ, (HSH) and Aspect experimentally rejected local hidden-variable theory

CHSH game: Test of entanglement

Two isolated parties Alice and Bob

- Alice gets coin toss x, replies a

- Bob gets coin toss y , replies b

Goal: maximize $a \oplus b=x \wedge y$

$x \quad y$	$x \wedge y \\| a \oplus b$	winning options for (a, b)
00	$0=0$	$(0,0)$ or $(1,1)$
01	$0=0$	$(0,0)$ or (1, 1
10	0 - 0	$(0,0)$ or $(1,1)$
-1 1	$1 \neq 1$	$(0,1)$ or $(1,0)=$

Best classical strategy to maximize $a \oplus b=x \wedge y$

Proof that any assignment to a and b cannot always satisfy $a \oplus b=x \wedge y$

1. Let a_{0} be Alice's response if she sees $x=0$
2. Let a_{1} be Alice's response if she sees $x=1$
3. Let b_{0} be Bob's response if she sees $y=0$
4. Let b_{1} be Bob's response if she sees $y=1$

Satisfy $a \oplus b=x \wedge y$

1. $a_{0} \oplus b_{0}=0$
2. $a_{0} \oplus b_{1}=0$
3. $a_{1} \oplus b_{0}=0$
4. $a_{1} \oplus b_{1}=1$

Sum (mod 2) of left side

$$
\begin{aligned}
& \left(a_{0} \oplus b_{0}\right) \oplus\left(a_{0} \oplus b_{1}\right) \oplus\left(a_{1} \oplus b_{0}\right) \oplus\left(a_{1} \oplus b_{1}\right)= \\
& \left(a_{0} \oplus a_{0}\right) \oplus\left(a_{1} \oplus a_{1}\right) \oplus\left(b_{0} \oplus b_{0}\right) \oplus\left(b_{1} \oplus b_{1}\right)=0
\end{aligned}
$$

Sum (mod 2) of right side 1

Best classical strategy to maximize $a \oplus b=x \wedge y$

- Even if the two shared randomness, the random coin toss of x and y prevents use of shared randomness.
- Best you can do is $3 / 4$.
- Give a couple ways of getting $3 / 4$

A quantum strategy to maximize $a \oplus b=x \wedge y$
Alice and Bob share entangled pair $|\Phi\rangle$
$\boldsymbol{y}|\Phi\rangle=\frac{1}{\sqrt{12}}(3|00\rangle+|01\rangle+|10\rangle-|11\rangle)$
$(x, y)=(0,0)$ So Alice and Bob both apply I:
7π

$$
\left\{\begin{array}{l}
(a, b)=(0,0), \text { a win, with probability } \frac{9}{12} / \\
(a, b)=(0,1), \text { a loss, with probability } \frac{1}{12} \\
(a, b)=(1,0), \text { a loss, with probability } \frac{1}{12} \\
(a, b)=(1,1), \text { a win, with probability } \frac{1}{12}
\end{array}\right\}
$$

A quantum strategy to maximize $a \oplus b=x \wedge y$
Alice and Bob share entangled pair $|\Phi\rangle$

$$
|\Phi\rangle=\frac{1}{\sqrt{12}}(3|00\rangle+|01\rangle+|10\rangle-|11\rangle)
$$

$(x, y)=(0,1)$ So Alice applies I, Bob applies $\underset{\underline{H}}{\mathrm{H}}$: 7π

$$
(I \otimes \Theta||\Phi\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right] \frac{1}{\sqrt{12}}\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right]=\underbrace{\frac{1}{2 \sqrt{6}}\left[\begin{array}{l}
4 \\
2 \\
0 \\
2
\end{array}\right]}
$$

Measurement yields

$$
\left\{\begin{array}{l}
(a, b)=(0,0), \text { a win, with probability } \frac{4}{6} \\
(a, b)=(0,1), \text { a loss, with probability } \frac{1}{6} \\
(a, b)=(1,0), \text { a loss, with probability } 0 \\
(a, b)=(1,1), \text { a win, with probability } \frac{1}{6}
\end{array}\right.
$$

A quantum strategy to maximize $a \oplus b=x \wedge y$
Alice and Bob share entangled pair $|\Phi\rangle$
$|\Phi\rangle=\frac{1}{\sqrt{12}}(3|00\rangle+|01\rangle+|10\rangle-|11\rangle)$
$(x, y)=(1,0)$ So Alice applies $\underset{\sim}{H}$, Bob applies I :

$$
(H \otimes I)|\Phi\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right] \frac{1}{\sqrt{12}}\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right]=\frac{1}{2 \sqrt{6}}\left[\begin{array}{l}
4 \\
0 \\
2 \\
2
\end{array}\right]
$$

Measurement yields

$$
\left\{\begin{array}{l}
(a, b)=(0,0), \text { a win, with probability } \frac{4}{6} \\
(a, b)=(0,1), \text { a loss, with probability } 0 \\
(a, b)=(1,0), \text { a loss, with probability } \frac{1}{6} \\
(a, b)=(1,1), \text { a win, with probability } \frac{1}{6}
\end{array}\right.
$$

A quantum strategy to maximize $a \oplus b=x \wedge y$
Alice and Bob share entangled pair $|\Phi\rangle$
$|\Phi\rangle=\frac{1}{\sqrt{12}}(3|00\rangle+|01\rangle+|10\rangle-|11\rangle)$
$(x, y)=(1,1)$ So Alice and Bob both apply H :

$$
(H \otimes H)|\Phi\rangle=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \frac{1}{\sqrt{12}}\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right]=\frac{1}{4 \sqrt{3}}\left[\begin{array}{l}
4 \\
4 \\
4 \\
0
\end{array}\right]
$$

Measurement yields

$$
\left\{\begin{array}{l}
(a, b)=(0,0), \text { a loss, with probability } \frac{1}{3} \\
(a, b)=(0,1), \text { a win, with probability } \frac{1}{3} \\
(a, b)=(1,0), \text { a win, with probability } \frac{1}{3} \\
(a, b)=(1,1), \text { a loss, with probability } 0
\end{array}\right.
$$

A quantum strategy to maximize $a \oplus b=x \wedge y$

Sum of winning chances?

$$
\frac{83 \%}{\frac{800}{\square}+[(1)}
$$

Philosophical interpretations of quantum mechanics

Cannot have both locality and realism

- Locality: "means that information and causation act locally, not faster than light"
- Realism: "means that physical systems have definite, well-defined properties (even if those properties may be unknown to us)"
Source: de Wolf. Quantum Computing: Lecture Notes
Unpalatable choices
- Keep locality and sacrifice realism: no definite narrative of the world
- Keep realism and sacrifice locality: spooky-action-at-a-distance \qquad

Table of contents

Quantum cryptography / quantum key exchange / BB84
Entanglement protocol: Quantum superdense coding
Entanglement protocol: Quantum teleportation
The universe does not obey local realism
EPR paradox
CHSH game
Hardy's paradox
Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

Problem description
Circuit diagram and what is in the oracle
Demonstration of Deutsch-Jozsa for the $n=1$ case
Deutsch-Jozsa programs and systems

Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

A Heist

- You break into a bank vault. The bank vault has 2^{n} bars. Three possibilities: all are gold, half are gold and half are fake, or all are fake.
- Even if you steal just one gold bar, it is enough to fund your escape from the country, forever evading law enforcement.
- You do not want to risk stealing from a bank vault with only fake bars.
- You have access to an oracle $f(x)$ that tells you if gold bar x is real.
- Using the oracle sounds the alarm, so you only get to use it once.

Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

More formal description

- The 2^{n} bars are either fake or gold. $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
- Three possibilities:

1. All are fake. f is constant. $f(x)=0$ for all $x \in\{0,1\}^{n}$.
2. All are gold. f is constant. $f(x)=1$ for all $x \in\{0,1\}^{n}$.
3. Half fake half gold. f is balanced.

$$
\left|\left\{x \in\{0,1\}^{n}: f(x)=0\right\}\right|=\left|\left\{x \in\{0,1\}^{n}: f(x)=1\right\}\right|=2^{n-1}
$$

- The oracle U works as follows: $U|c\rangle|t\rangle=|c\rangle|t \oplus f(c)\rangle$
- Try deciding if f is constant or balanced using oracle U only once.

What is in the oracle

For $n=1$ ，four possibilities				
	f_{0}	f_{1}	f_{2}	f_{3}
$\mathrm{f}(0)$	0	0	1	1
$\mathrm{f}(1)$	0	1	0	1
	f is constant 0	f is balanced	f is balanced	f is constant 1

Demonstration of Deutsch-Jozsa for the $n=1$ case

Output of circuit is $c=0$ iff f is constant

1. Initial state: $|c\rangle \otimes|t\rangle=|0\rangle \otimes|1\rangle=|0\rangle|1\rangle=|01\rangle$
2. After first set of Hadamards: $H \otimes H(|0\rangle \otimes|1\rangle)=H|0\rangle \otimes H|1\rangle=|+\rangle \otimes|-\rangle=$

$$
\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right) \otimes\left(\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle\right)=\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

From here, let's take an aside via matrix-vector multiplication to build intuition with interference and phase kickback.

Demonstration of Deutsch-Jozsa for the $n=1$ case

Output of circuit is $c=0$ iff f is constant

1. Initial state: $|c\rangle \otimes|t\rangle=|0\rangle \otimes|1\rangle=|0\rangle|1\rangle=|01\rangle$
2. After first set of Hadamards: $H \otimes H(|0\rangle \otimes|1\rangle)=|+\rangle|-\rangle=$ $\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)\left(\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle\right)=\frac{1}{2}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))$
3. After applying oracle U :

$$
\begin{aligned}
& U \frac{1}{2}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))=\frac{1}{2}(|0\rangle(|f(0) \oplus 0\rangle-|f(0) \oplus 1\rangle)+ \\
& |1\rangle(|f(1) \oplus 0\rangle-|f(1) \oplus 1\rangle))=\frac{1}{2}(|0\rangle(|f(0)\rangle-|f(\overline{0})\rangle)+|1\rangle(|f(1)\rangle-|f(\overline{1})\rangle))
\end{aligned}
$$

Demonstration of Deutsch-Jozsa for the $n=1$ case

Output of circuit is $c=0$ iff f is constant

1. Initial state: $|c\rangle \otimes|t\rangle=|0\rangle \otimes|1\rangle=|0\rangle|1\rangle=|01\rangle$
2. After first set of Hadamards: $\frac{1}{2}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))$
3. After applying oracle U : $U \frac{1}{2}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))=$

$$
\frac{1}{2}(|0\rangle(|f(0)\rangle-|\overline{f(0)}\rangle)+|1\rangle(|f(1)\rangle-|f \overline{(1)}\rangle))
$$

4. This last expression can be factored depending on f :

$$
\begin{aligned}
& U \frac{1}{2}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))= \\
& \left\{\begin{array}{l}
\frac{1}{2}(|0\rangle+|1\rangle)(|f(0)\rangle-|f(0)\rangle) \text { if } f(0)=f(1) \\
\frac{1}{2}(|0\rangle-|1\rangle)(|f(0)\rangle-|f \overline{(0)}\rangle) \text { if } f(0) \neq f(1)
\end{array}=\left\{\begin{array}{l}
|+\rangle|-\rangle \text { if } f(0)=f(1) \\
|-\rangle|-\rangle \text { if } f(0) \neq f(1)
\end{array}\right.\right.
\end{aligned}
$$

The trick where oracle's output on $|t\rangle$ affects phase of $|c\rangle$ is called phase kickback.

Demonstration of Deutsch-Jozsa for the $n=1$ case

Output of circuit is $c=0$ iff f is constant

1. Initial state: $|c\rangle \otimes|t\rangle=|0\rangle \otimes|1\rangle=|0\rangle|1\rangle=|01\rangle$
2. After first set of Hadamards: $\frac{1}{2}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))$
3. After applying oracle U :

$$
U_{\frac{1}{2}}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))=\left\{\begin{array}{l}
|+\rangle|-\rangle \text { if } f(0)=f(1) \\
|-\rangle|-\rangle \text { if } f(0) \neq f(1)
\end{array}\right.
$$

4. After applying second H on top qubit:

$$
\left\{\begin{array}{l}
H \otimes I(|+\rangle|-\rangle)=|0\rangle|-\rangle \text { if } f(0)=f(1) \\
H \otimes I(|-\rangle|-\rangle)=|1\rangle|-\rangle \text { if } f(0) \neq f(1)
\end{array}\right.
$$

Deutsch-Jozsa programs and systems

Algorithm

David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation. 1992.

Programs
Google Cirq programming example.
Implementation

- Mach-Zehnder interferometer implementation. https://www.st-andrews.ac.uk/physics/quvis/simulations_ html5/sims/SinglePhotonLab/SinglePhotonLab.html
- Ion trap implementation. Gulde et al. Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer. Letters to Nature. 2003.

Mach-Zehnder interferometer implementation of Deutsch's algorithm

$$
|0\rangle \xrightarrow{H}|+\rangle=\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]\left\{\begin{array}{ll}
\xrightarrow{I}|+\rangle=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] & \xrightarrow{H}|0\rangle \\
Z \\
\xrightarrow{-Z}-\rangle=\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right] & \xrightarrow{H}|1\rangle \\
\xrightarrow{-Z Z=-I}-\left[\begin{array}{c}
\frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] & \xrightarrow{H}-|1\rangle \\
& {\left[\begin{array}{c}
\frac{-1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]}
\end{array} \xrightarrow{H}-|0\rangle\right.
$$

