
1/29

Basic quantum algorithms: Key exchange / Bell’s inequality

Yipeng Huang

Rutgers University

February 2, 2024

 



2/29

Table of contents
Quantum cryptography / quantum key exchange / BB84

Entanglement protocol: Quantum superdense coding

Entanglement protocol: Quantum teleportation

The universe does not obey local realism
EPR paradox
CHSH game
Hardy’s paradox

Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs.
classical

Problem description
Circuit diagram and what is in the oracle
Demonstration of Deutsch-Jozsa for the n = 1 case
Deutsch-Jozsa programs and systems



A
Ex

③
ÉfÉÉf fff
1 8 1 0 2 0 1 1 0 1 0



3/29

Table of contents
Quantum cryptography / quantum key exchange / BB84

Entanglement protocol: Quantum superdense coding

Entanglement protocol: Quantum teleportation

The universe does not obey local realism
EPR paradox
CHSH game
Hardy’s paradox

Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs.
classical

Problem description
Circuit diagram and what is in the oracle
Demonstration of Deutsch-Jozsa for the n = 1 case
Deutsch-Jozsa programs and systems



4/29

Bell states form an orthogonal basis set
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Superdense coding

Transmit 2 bits of classical information by sending 1 qubit

1. Alice wishes to tell Bob two bits of information: 00, 01, 10, or 11.
2. Alice and Bob each have one qubit of a Bell pair in state

|Pi = |�+i = 1p
2

⇣
|00i+ |11i

⌘
.

3. Alice performs I, X, Z, or ZX on her qubit; she then sends her qubit to Bob.
4. Bob measures in the Bell basis to receive 00, 01, 10, or 11.

Superdense coding circuit
https://github.com/quantumlib/Cirq/blob/master/examples/
superdense_coding.py

https://github.com/quantumlib/Cirq/blob/master/examples/superdense_coding.py
https://github.com/quantumlib/Cirq/blob/master/examples/superdense_coding.py
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Superdense coding
Transmit 2 bits of classical information by sending 1 qubit

1. Alice wishes to tell Bob two bits of information: 00, 01, 10, or 11.
2. Alice and Bob each have one qubit of a Bell pair in state

|Pi = |�+i = 1p
2

⇣
|00i+ |11i

⌘
.

3. Alice performs I, X, Z, or ZX on her qubit; she then sends her qubit to Bob.
4. Bob measures in the Bell basis to receive 00, 01, 10, or 11.

Alice applies different operators on her qubit so Bob measures the message
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Quantum teleportation

“Teleport” a qubit state by
transmitting classical information

1. Alice wishes to give Bob a qubit
state |Qi.

2. Alice and Bob each have one qubit
of a Bell pair in state |Pi.

3. Alice first entangles |Qi and |Pi;
then, she measures her local two
qubits.

4. Alice tells Bob (via classical means)
her two-bit measurement result.

5. Bob uses Alice’s two bits to perform
I, X, Z, or ZX on his qubit to obtain
|Qi.

Depending on if Alice measures 00,
01, 10, or 11, Bob applies I, X, Z, or
ZX to recover |Qi
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EPR paradox

I When quantum physics was first discovered, the mathematics of
entanglement led to shocking conclusions.

I If you can keep systems coherent (isolated), they can exhibit superposition
and entanglement.

I Einstein and others: there shouldn’t be “spooky action at a distance” so there
must be some local hidden-variable. The task was then to prove or disprove
local hidden-variables.

I But protocols and experiments like Hardy’s, GHZ, CHSH, and Aspect
experimentally rejected local hidden-variable theory.e
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CHSH game: Test of entanglement

Two isolated parties Alice and Bob
I Alice gets coin toss x, replies a
I Bob gets coin toss y, replies b

Goal: maximize a � b = x ^ y
x y x ^ y a � b winning options for (a, b)
0 0 0 0 (0,0) or (1,1)
0 1 0 0 (0,0) or (1,1)
1 0 0 0 (0,0) or (1,1)
1 1 1 1 (0,1) or (1,0)

FEED
K

E E
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Best classical strategy to maximize a � b = x ^ y

Proof that any assignment to a and b cannot always satisfy a � b = x ^ y

1. Let a0 be Alice’s response if she sees x = 0
2. Let a1 be Alice’s response if she sees x = 1
3. Let b0 be Bob’s response if she sees y = 0
4. Let b1 be Bob’s response if she sees y = 1

Satisfy a � b = x ^ y

1. a0 � b0 = 0
2. a0 � b1 = 0
3. a1 � b0 = 0
4. a1 � b1 = 1

Sum (mod 2) of left side
(a0�b0)� (a0�b1)� (a1�b0)� (a1�b1) =
(a0�a0)�(a1�a1)�(b0�b0)�(b1�b1) = 0

Sum (mod 2) of right side
1
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Best classical strategy to maximize a � b = x ^ y

I Even if the two shared randomness, the random coin toss of x and y prevents
use of shared randomness.

I Best you can do is 3/4.
I Give a couple ways of getting 3/4
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A quantum strategy to maximize a � b = x ^ y
Alice and Bob share entangled pair |�i
|�i = 1p
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⇣
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>>>><

>>>>:

(a, b) = (0, 0), a win, with probability 9
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(a, b) = (0, 1), a loss, with probability 1
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(a, b) = (1, 0), a loss, with probability 1
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(a, b) = (1, 1), a win, with probability 1
12
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A quantum strategy to maximize a � b = x ^ y
Alice and Bob share entangled pair |�i
|�i = 1p
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A quantum strategy to maximize a � b = x ^ y
Alice and Bob share entangled pair |�i
|�i = 1p
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8
>>>><
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(a, b) = (0, 0), a win, with probability 4
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(a, b) = (0, 1), a loss, with probability 0
(a, b) = (1, 0), a loss, with probability 1
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(a, b) = (1, 1), a win, with probability 1
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A quantum strategy to maximize a � b = x ^ y
Alice and Bob share entangled pair |�i
|�i = 1p
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(a, b) = (0, 0), a loss, with probability 1
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(a, b) = (1, 1), a loss, with probability 0
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A quantum strategy to maximize a � b = x ^ y

Sum of winning chances?

83

1 40 H 10 01 10 1
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Philosophical interpretations of quantum mechanics

Cannot have both locality and realism
I Locality: “means that information and causation act locally, not faster than

light”
I Realism: “means that physical systems have definite, well-defined properties

(even if those properties may be unknown to us)”
Source: de Wolf. Quantum Computing: Lecture Notes

Unpalatable choices
I Keep locality and sacrifice realism: no definite narrative of the world
I Keep realism and sacrifice locality: spooky-action-at-a-distance

4

i
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Deutsch-Jozsa algorithm: simplest quantum algorithm showing
advantage vs. classical

A Heist
I You break into a bank vault. The bank vault has 2n bars. Three possibilities:

all are gold, half are gold and half are fake, or all are fake.
I Even if you steal just one gold bar, it is enough to fund your escape from the

country, forever evading law enforcement.
I You do not want to risk stealing from a bank vault with only fake bars.
I You have access to an oracle f (x) that tells you if gold bar x is real.
I Using the oracle sounds the alarm, so you only get to use it once.
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Deutsch-Jozsa algorithm: simplest quantum algorithm showing
advantage vs. classical

More formal description
I The 2n bars are either fake or gold. f : {0, 1}n ! {0, 1}.
I Three possibilities:

1. All are fake. f is constant. f (x) = 0 for all x 2 {0, 1}n.
2. All are gold. f is constant. f (x) = 1 for all x 2 {0, 1}n.
3. Half fake half gold. f is balanced.����{x 2 {0, 1}n : f (x) = 0}

���� =
����{x 2 {0, 1}n : f (x) = 1}

���� = 2n�1

I The oracle U works as follows: U |ci |ti = |ci |t � f (c)i
I Try deciding if f is constant or balanced using oracle U only once.
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What is in the oracle

For n = 1, four possibilities
f0 f1 f2 f3

f(0) 0 0 1 1
f(1) 0 1 0 1

f is constant 0 f is balanced f is balanced f is constant 1
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Demonstration of Deutsch-Jozsa for the n = 1 case

Output of circuit is c = 0 iff f is constant

1. Initial state: |ci ⌦ |ti = |0i ⌦ |1i = |0i |1i = |01i

2. After first set of Hadamards: H ⌦ H
✓
|0i ⌦ |1i

◆
= H |0i ⌦ H |1i = |+i ⌦ |�i =

✓
1p
2
|0i+ 1p

2
|1i

◆
⌦
✓

1p
2
|0i � 1p

2
|1i

◆
= 1

2

2

664

1
�1
1
�1

3

775

From here, let’s take an aside via matrix-vector multiplication to build intuition
with interference and phase kickback.
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Demonstration of Deutsch-Jozsa for the n = 1 case

Output of circuit is c = 0 iff f is constant

1. Initial state: |ci ⌦ |ti = |0i ⌦ |1i = |0i |1i = |01i

2. After first set of Hadamards: H ⌦ H
✓
|0i ⌦ |1i

◆
= |+i |�i =

✓
1p
2
|0i+ 1p

2
|1i

◆✓
1p
2
|0i � 1p

2
|1i

◆
= 1

2

✓
|0i

�
|0i � |1i

�
+ |1i

�
|0i � |1i

�◆

3. After applying oracle U:

U 1
2

✓
|0i

�
|0i � |1i

�
+ |1i

�
|0i � |1i

�◆
= 1

2

✓
|0i

�
|f (0)� 0i � |f (0)� 1i

�
+

|1i
�
|f (1)� 0i � |f (1)� 1i

�◆
= 1

2

✓
|0i

�
|f (0)i � | ¯f (0)i

�
+ |1i

�
|f (1)i � | ¯f (1)i

�◆
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Demonstration of Deutsch-Jozsa for the n = 1 case
Output of circuit is c = 0 iff f is constant

1. Initial state: |ci ⌦ |ti = |0i ⌦ |1i = |0i |1i = |01i

2. After first set of Hadamards: 1
2

✓
|0i (|0i � |1i) + |1i (|0i � |1i)

◆

3. After applying oracle U: U 1
2

✓
|0i (|0i � |1i) + |1i (|0i � |1i)

◆
=

1
2

✓
|0i

�
|f (0)i � | ¯f (0)i

�
+ |1i

�
|f (1)i � | ¯f (1)i

�◆

4. This last expression can be factored depending on f :

U 1
2

✓
|0i (|0i � |1i) + |1i (|0i � |1i)

◆
=

(
1
2
�
|0i+ |1i

��
|f (0)i � | ¯f (0)i

�
if f (0) = f (1)

1
2
�
|0i � |1i

��
|f (0)i � | ¯f (0)i

�
if f (0) 6= f (1)

=

(
|+i |�i if f (0) = f (1)
|�i |�i if f (0) 6= f (1)

The trick where oracle’s output on |ti affects phase of |ci is called phase kickback.
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Demonstration of Deutsch-Jozsa for the n = 1 case

Output of circuit is c = 0 iff f is constant

1. Initial state: |ci ⌦ |ti = |0i ⌦ |1i = |0i |1i = |01i

2. After first set of Hadamards: 1
2

✓
|0i (|0i � |1i) + |1i (|0i � |1i)

◆

3. After applying oracle U:

U 1
2

✓
|0i (|0i � |1i) + |1i (|0i � |1i)

◆
=

(
|+i |�i if f (0) = f (1)
|�i |�i if f (0) 6= f (1)

4. After applying second H on top qubit:(
H ⌦ I

�
|+i |�i

�
= |0i |�i if f (0) = f (1)

H ⌦ I
�
|�i |�i

�
= |1i |�i if f (0) 6= f (1)
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Deutsch-Jozsa programs and systems

Algorithm
David Deutsch and Richard Jozsa. Rapid solution of problems by quantum
computation. 1992.

Programs
Google Cirq programming example.

Implementation
I Mach-Zehnder interferometer implementation.

https://www.st-andrews.ac.uk/physics/quvis/simulations_
html5/sims/SinglePhotonLab/SinglePhotonLab.html

I Ion trap implementation. Gulde et al. Implementation of the Deutsch–Jozsa
algorithm on an ion-trap quantum computer. Letters to Nature. 2003.

https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/SinglePhotonLab.html
https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/SinglePhotonLab.html
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Mach-Zehnder interferometer implementation of Deutsch’s
algorithm

|0i H�! |+i =
"

1p
2

1p
2

#

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

I�! |+i =
"

1p
2

1p
2

#
H�! |0i

Z�! |�i =
"

1p
2

�1p
2

#
H�! |1i

�Z��! � |�i =
"�1p

2
1p
2

#
H�! � |1i

�ZZ=�I�����! � |+i =
"�1p

2
�1p

2

#
H�! � |0i


