Basic quantum algorithms: Key exchange / Bell's inequality

Yipeng Huang

Rutgers University

February 2, 2024

Table of contents

Quantum cryptography / quantum key exchange / BB84

Entanglement protocol: Quantum superdense coding

Entanglement protocol: Quantum teleportation

The universe does not obey local realism EPR paradox CHSH game Hardy's paradox

Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

Problem description

Circuit diagram and what is in the oracle

Demonstration of Deutsch-Jozsa for the n = 1 case

Deutsch-Jozsa programs and systems

Table of contents

Quantum cryptography / quantum key exchange / BB84

Entanglement protocol: Quantum superdense coding

Entanglement protocol: Quantum teleportation

The universe does not obey local realism EPR paradox CHSH game Hardy's paradox

Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

Problem description

Circuit diagram and what is in the oracle

Demonstration of Deutsch-Jozsa for the n = 1 case

Deutsch-Jozsa programs and systems

Bell states form an orthogonal basis set

$$1. |00\rangle \xrightarrow{H \otimes I} \frac{1}{\sqrt{2}} \left(|00\rangle + |10\rangle \right) \xrightarrow{CNOT} \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right) = |\Phi^+\rangle$$

$$2. |01\rangle \xrightarrow{H \otimes I} \frac{1}{\sqrt{2}} \left(|01\rangle + |11\rangle \right) \xrightarrow{CNOT} \frac{1}{\sqrt{2}} \left(|01\rangle + |10\rangle \right) = |\Psi^+\rangle$$

$$3. |10\rangle \xrightarrow{H \otimes I} \frac{1}{\sqrt{2}} \left(|00\rangle - |10\rangle \right) \xrightarrow{CNOT} \frac{1}{\sqrt{2}} \left(|00\rangle - |11\rangle \right) = |\Phi^-\rangle$$

$$4. |11\rangle \xrightarrow{H \otimes I} \frac{1}{\sqrt{2}} \left(|01\rangle - |11\rangle \right) \xrightarrow{CNOT} \frac{1}{\sqrt{2}} \left(|01\rangle - |10\rangle \right) = |\Psi^-\rangle$$

・ロ ・ <
一 ・ <
一 ・ <
三 ・ <
三 ・ <
三 ・ <
、 2 ・ <
、 4/29
</p>

Superdense coding

Transmit 2 bits of classical information by sending 1 qubit

- 1. Alice wishes to tell Bob two bits of information: 00, 01, 10, or 11.
- 2. Alice and Bob each have one qubit of a Bell pair in state $|P\rangle = |\Phi^+\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right).$
- 3. Alice performs *I*, *X*, *Z*, or *ZX* on her qubit; she then sends her qubit to Bob.
- 4. Bob measures in the Bell basis to receive 00, 01, 10, or 11.

Superdense coding circuit

https://github.com/quantumlib/Cirq/blob/master/examples/ superdense_coding.py

Superdense coding

Transmit 2 bits of classical information by sending 1 qubit

- 1. Alice wishes to tell Bob two bits of information: 00, 01, 10, or 11.
- 2. Alice and Bob each have one qubit of a Bell pair in state

$$|P\rangle = |\Phi^+\rangle = \frac{1}{\sqrt{2}} \Big(|00\rangle + |11\rangle \Big).$$

- 3. Alice performs *I*, *X*, *Z*, or *ZX* on her qubit; she then sends her qubit to Bob.
- 4. Bob measures in the Bell basis to receive 00, 01, 10, or 11.

Alice applies different operators on her qubit so Bob measures the message

$$1. |P\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right) \xrightarrow{I \otimes I} \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right) \xrightarrow{CNOT} \frac{1}{\sqrt{2}} \left(|00\rangle + |10\rangle \right) \xrightarrow{H \otimes I} |00\rangle$$

$$2. |P\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right) \xrightarrow{X \otimes I} \frac{1}{\sqrt{2}} \left(|10\rangle + |01\rangle \right) \xrightarrow{CNOT} \frac{1}{\sqrt{2}} \left(|11\rangle + |01\rangle \right) \xrightarrow{H \otimes I} |01\rangle$$

$$3. |P\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right) \xrightarrow{Z \otimes I} \frac{1}{\sqrt{2}} \left(|00\rangle - |11\rangle \right) \xrightarrow{CNOT} \frac{1}{\sqrt{2}} \left(|00\rangle - |10\rangle \right) \xrightarrow{H \otimes I} |10\rangle$$

$$4. |P\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right) \xrightarrow{ZX \otimes I} \frac{1}{\sqrt{2}} \left(- |10\rangle + |01\rangle \right) \xrightarrow{CNOT} \frac{1}{\sqrt{2}} \left(- |11\rangle + |01\rangle \right) \xrightarrow{H \otimes I} |11\rangle$$

Table of contents

Quantum cryptography / quantum key exchange / BB84

Entanglement protocol: Quantum superdense coding

Entanglement protocol: Quantum teleportation

The universe does not obey local realism EPR paradox CHSH game Hardy's paradox

Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

Problem description

Circuit diagram and what is in the oracle

Demonstration of Deutsch-Jozsa for the n = 1 case

Deutsch-Jozsa programs and systems

Quantum teleportation

"Teleport" a qubit state by transmitting classical information

- 1. Alice wishes to give Bob a qubit state $|Q\rangle$.
- 2. Alice and Bob each have one qubit of a Bell pair in state $|P\rangle$.
- 3. Alice first entangles |Q⟩ and |P⟩;
 then, she measures her local two qubits.
- 4. Alice tells Bob (via classical means) her two-bit measurement result.
- 5. Bob uses Alice's two bits to perform I, X, Z, or ZX on his qubit to obtain $|Q\rangle$.

Depending on if Alice measures 00, 01, 10, or 11, Bob applies I, X, Z, or ZX to recover $|Q\rangle$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の へ ()

8/29

Table of contents

Quantum cryptography / quantum key exchange / BB84

Entanglement protocol: Quantum superdense coding

Entanglement protocol: Quantum teleportation

The universe does not obey local realism EPR paradox CHSH game Hardy's paradox

Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

Problem description

Circuit diagram and what is in the oracle

Demonstration of Deutsch-Jozsa for the n = 1 case

Deutsch-Jozsa programs and systems

EPR paradox

- When quantum physics was first discovered, the mathematics of entanglement led to shocking conclusions.
- If you can keep systems coherent (isolated), they can exhibit superposition and entanglement.
- Einstein and others: there shouldn't be "spooky action at a distance" so there must be some local hidden-variable. The task was then to prove or disprove local hidden-variables.
- But protocols and experiments like Hardy's, GHZ, CHSH and Aspect experimentally rejected local hidden-variable theory.

CHSH game: Test of entanglement

Two isolated parties Alice and Bob

- Alice gets coin toss x, replies a
- Bob gets coin toss y, replies b

Goal: maximize $a \oplus b = x \wedge y$

	x	y	$x \wedge y$	$a \oplus b$	winning options for (a, b)
	0	0	0	-0	(0,0) or (1,1)
	0	1	0	0	(0,0) or (1,1)
	1	0	0	0	(0,0) or (1,1)
~	-1	1	1	1	(0,1) or (1,0)—
			' √ '	' ~~	1

Best classical strategy to maximize $a \oplus b = x \land y$

Proof that any assignment to *a* and *b* cannot always satisfy $a \oplus b = x \land y$

1

- 1. Let a_0 be Alice's response if she sees x = 0
- 2. Let a_1 be Alice's response if she sees x = 1
- 3. Let b_0 be Bob's response if she sees y = 0
- 4. Let b_1 be Bob's response if she sees y = 1

Satisfy $a \oplus b = x \wedge y$

- 1. $a_0 \oplus b_0 = 0$
- **2.** $a_0 \oplus b_1 = 0$
- 3. $a_1 \oplus b_0 = 0$

4. $a_1 \oplus b_1 = 1$

Sum (mod 2) of left side $(a_1 \oplus b_2) \oplus (a_2 \oplus b_3) \oplus (a_2 \oplus b_3) \oplus (a_4 \oplus b_3) \oplus (a_$

 $(a_0 \oplus b_0) \oplus (a_0 \oplus b_1) \oplus (a_1 \oplus b_0) \oplus (a_1 \oplus b_1) = (a_0 \oplus a_0) \oplus (a_1 \oplus a_1) \oplus (b_0 \oplus b_0) \oplus (b_1 \oplus b_1) = 0$

Sum (mod 2) of right side

Best classical strategy to maximize $a \oplus b = x \land y$

Even if the two shared randomness, the random coin toss of x and y prevents use of shared randomness.

・ロト、日本・モート、日本・ローンのので、13/29

- Best you can do is 3/4.
- ► Give a couple ways of getting 3/4

A quantum strategy to maximize $a \oplus b = x \wedge y$ Alice and Bob share entangled pair $|\Phi\rangle$ $|\Phi\rangle = \frac{1}{\sqrt{12}} \left(3 \left| 00 \right\rangle + \left| 01 \right\rangle + \left| 10 \right\rangle - \left| 11 \right\rangle \right)$ (x, y) = (0, 0) So Alice and Bob both apply *I*: $(I \otimes I) |\Phi\rangle = \frac{1}{\sqrt{12}} \left[\begin{array}{c} 1\\ 1\\ -1 \end{array} \right]$

Measurement yields

$$\begin{cases} (a,b) = (0,0), \text{ a win, with probability } \frac{9}{12} \\ (a,b) = (0,1), \text{ a loss, with probability } \frac{1}{12} \\ (a,b) = (1,0), \text{ a loss, with probability } \frac{1}{12} \\ (a,b) = (1,1), \text{ a win, with probability } \frac{1}{12} \end{cases}$$

▲ 王 ▶ 王 ⑦ < ?~</p>

14/29

A quantum strategy to maximize $a \oplus b = x \land y$ Alice and Bob share entangled pair $|\Phi\rangle$ $|\Phi\rangle = \frac{1}{\sqrt{12}} \left(3 |00\rangle + |01\rangle + |10\rangle - |11\rangle \right)$ (x, y) = (0, 1) So Alice applies I, Bob applies H: $(I \otimes H) |\Phi\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \frac{1}{\sqrt{12}} \begin{bmatrix} 3 \\ 1 \\ 1 \\ -1 \end{bmatrix} = \frac{1}{2\sqrt{6}} \begin{bmatrix} 7 \\ 2 \\ 0 \\ 2 \end{bmatrix}$

Measurement yields

 $\begin{cases} (a,b) = (0,0), \text{ a win, with probability } \frac{4}{6} \\ (a,b) = (0,1), \text{ a loss, with probability } \frac{1}{6} \\ (a,b) = (1,0), \text{ a loss, with probability } 0 \\ (a,b) = (1,1), \text{ a win, with probability } \frac{1}{6} \end{cases}$

A quantum strategy to maximize $a \oplus b = x \land y$

Alice and Bob share entangled pair $|\Phi\rangle$ $|\Phi\rangle = \frac{1}{\sqrt{12}} \left(3 |00\rangle + |01\rangle + |10\rangle - |11\rangle \right)$

(x, y) = (1, 0) So Alice applies *H*, Bob applies *I*:

$$(H \otimes I) |\Phi\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \frac{1}{\sqrt{12}} \begin{bmatrix} 3 \\ 1 \\ 1 \\ -1 \end{bmatrix} = \frac{1}{2\sqrt{6}} \begin{bmatrix} 4 \\ 0 \\ 2 \\ 2 \end{bmatrix}$$

Measurement yields

 $\begin{cases} (a,b) = (0,0), \text{ a win, with probability } \frac{4}{6} \\ (a,b) = (0,1), \text{ a loss, with probability } 0 \\ (a,b) = (1,0), \text{ a loss, with probability } \frac{1}{6} \\ (a,b) = (1,1), \text{ a win, with probability } \frac{1}{6} \end{cases}$

16/29

A quantum strategy to maximize $a \oplus b = x \land y$ Alice and Bob share entangled pair $|\Phi\rangle$ $|\Phi\rangle = \frac{1}{\sqrt{12}} (3|00\rangle + |01\rangle + |10\rangle - |11\rangle)$

(x, y) = (1, 1) So Alice and Bob both apply *H*:

Measurement yields

 $\begin{cases} (a,b) = (0,0), \text{ a loss, with probability } \frac{1}{3} \\ (a,b) = (0,1), \text{ a win, with probability } \frac{1}{3} \\ (a,b) = (1,0), \text{ a win, with probability } \frac{1}{3} \\ (a,b) = (1,1), \text{ a loss, with probability } 0 \end{cases}$

A quantum strategy to maximize $a \oplus b = x \land y$

Sum of winning chances?

83% (0,0), (0,0), (1,1), (0,0) 52

Philosophical interpretations of quantum mechanics

Cannot have both locality and realism

- s × t
- Locality: "means that information and causation act locally, not faster than light"
- Realism: "means that physical systems have definite, well-defined properties (even if those properties may be unknown to us)"

Source: de Wolf. Quantum Computing: Lecture Notes

Unpalatable choices

- Keep locality and sacrifice realism: no definite narrative of the world
- Keep realism and sacrifice locality: spooky-action-at-a-distance //

Table of contents

Quantum cryptography / quantum key exchange / BB84

Entanglement protocol: Quantum superdense coding

Entanglement protocol: Quantum teleportation

The universe does not obey local realism EPR paradox CHSH game Hardy's paradox

Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

Problem description

Circuit diagram and what is in the oracle

Demonstration of Deutsch-Jozsa for the n = 1 case

Deutsch-Jozsa programs and systems

Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

A Heist

- You break into a bank vault. The bank vault has 2ⁿ bars. Three possibilities: all are gold, half are gold and half are fake, or all are fake.
- Even if you steal just one gold bar, it is enough to fund your escape from the country, forever evading law enforcement.
- You do not want to risk stealing from a bank vault with only fake bars.
- You have access to an oracle f(x) that tells you if gold bar x is real.
- Using the oracle sounds the alarm, so you only get to use it once.

Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

More formal description

- ▶ The 2^n bars are either fake or gold. $f : \{0, 1\}^n \to \{0, 1\}$.
- Three possibilities:
 - 1. All are fake. *f* is constant. f(x) = 0 for all $x \in \{0, 1\}^n$.
 - 2. All are gold. *f* is constant. f(x) = 1 for all $x \in \{0, 1\}^n$.
 - 3. Half fake half gold. *f* is balanced.

$$\left| \{ x \in \{0,1\}^n : f(x) = 0 \} \right| = \left| \{ x \in \{0,1\}^n : f(x) = 1 \} \right| = 2^{n-1}$$

- The oracle *U* works as follows: $U |c\rangle |t\rangle = |c\rangle |t \oplus f(c)\rangle$
- ▶ Try deciding if *f* is constant or balanced using oracle *U* only once.

What is in the oracle

Output of circuit is c = 0 iff f is constant

1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle \otimes |1\rangle = |0\rangle |1\rangle = |01\rangle$

2. After first set of Hadamards: $H \otimes H\left(|0\rangle \otimes |1\rangle \right) = H |0\rangle \otimes H |1\rangle = |+\rangle \otimes |-\rangle = \left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right) \otimes \left(\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle\right) = \frac{1}{2} \begin{bmatrix}1\\-1\\1\\-1\end{bmatrix}$

From here, let's take an aside via matrix-vector multiplication to build intuition with interference and phase kickback.

▲□▶▲□▶▲□▶▲□▶ □ のへで

24/29

Output of circuit is c = 0 iff f is constant

- 1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle \otimes |1\rangle = |0\rangle |1\rangle = |01\rangle$
- 2. After first set of Hadamards: $H \otimes H\left(|0\rangle \otimes |1\rangle \right) = |+\rangle |-\rangle =$

$$\left(\frac{1}{\sqrt{2}}\left|0\right\rangle + \frac{1}{\sqrt{2}}\left|1\right\rangle\right) \left(\frac{1}{\sqrt{2}}\left|0\right\rangle - \frac{1}{\sqrt{2}}\left|1\right\rangle\right) = \frac{1}{2} \left(\left|0\right\rangle\left(\left|0\right\rangle - \left|1\right\rangle\right) + \left|1\right\rangle\left(\left|0\right\rangle - \left|1\right\rangle\right)\right)$$

3. After applying oracle U:

$$U_{\frac{1}{2}}\left(|0\rangle \left(|0\rangle - |1\rangle\right) + |1\rangle \left(|0\rangle - |1\rangle\right)\right) = \frac{1}{2}\left(|0\rangle \left(|f(0) \oplus 0\rangle - |f(0) \oplus 1\rangle\right) + |1\rangle \left(|f(1) \oplus 0\rangle - |f(1) \oplus 1\rangle\right)\right) = \frac{1}{2}\left(|0\rangle \left(|f(0)\rangle - |f(0)\rangle\right) + |1\rangle \left(|f(1)\rangle - |f(1)\rangle\right)\right)$$

Output of circuit is c = 0 iff f is constant

- 1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle \otimes |1\rangle = |0\rangle |1\rangle = |01\rangle$
- 2. After first set of Hadamards: $\frac{1}{2} \left(|0\rangle (|0\rangle |1\rangle) + |1\rangle (|0\rangle |1\rangle) \right)$
- 3. After applying oracle $U: U_{\frac{1}{2}} \left(|0\rangle (|0\rangle |1\rangle) + |1\rangle (|0\rangle |1\rangle) \right) = \frac{1}{2} \left(|0\rangle \left(|f(0)\rangle |f(\overline{0})\rangle \right) + |1\rangle \left(|f(1)\rangle |f(\overline{1})\rangle \right) \right)$
- 4. This last expression can be factored depending on *f*: $U\frac{1}{2}\left(|0\rangle (|0\rangle - |1\rangle) + |1\rangle (|0\rangle - |1\rangle)\right) = \begin{cases} \frac{1}{2}(|0\rangle + |1\rangle) (|f(0)\rangle - |f(\overline{0})\rangle) & \text{if } f(0) = f(1) \\ \frac{1}{2}(|0\rangle - |1\rangle) (|f(0)\rangle - |f(\overline{0})\rangle) & \text{if } f(0) \neq f(1) \end{cases} = \begin{cases} |+\rangle|-\rangle & \text{if } f(0) = f(1) \\ |-\rangle|-\rangle & \text{if } f(0) \neq f(1) \end{cases}$

The trick where oracle's output on $|t\rangle$ affects phase of $|c\rangle$ is called phase kickback.

26/29

Output of circuit is c = 0 iff f is constant

- 1. Initial state: $|c\rangle \otimes |t\rangle = |0\rangle \otimes |1\rangle = |0\rangle |1\rangle = |01\rangle$
- 2. After first set of Hadamards: $\frac{1}{2} \left(|0\rangle (|0\rangle |1\rangle) + |1\rangle (|0\rangle |1\rangle) \right)$
- 3. After applying oracle *U*: $U_{\frac{1}{2}}\left(|0\rangle (|0\rangle - |1\rangle) + |1\rangle (|0\rangle - |1\rangle)\right) = \begin{cases} |+\rangle |-\rangle & \text{if } f(0) = f(1) \\ |-\rangle |-\rangle & \text{if } f(0) \neq f(1) \end{cases}$
- 4. After applying second *H* on top qubit: $\begin{cases}
 H \otimes I(|+\rangle |-\rangle) = |0\rangle |-\rangle & \text{if } f(0) = f(1) \\
 H \otimes I(|-\rangle |-\rangle) = |1\rangle |-\rangle & \text{if } f(0) \neq f(1)
 \end{cases}$

Deutsch-Jozsa programs and systems

Algorithm

David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation. 1992.

Programs

Google Cirq programming example.

Implementation

Mach-Zehnder interferometer implementation. https://www.st-andrews.ac.uk/physics/quvis/simulations_ html5/sims/SinglePhotonLab/SinglePhotonLab.html

Ion trap implementation. Gulde et al. Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer. Letters to Nature. 2003.

Mach-Zehnder interferometer implementation of Deutsch's algorithm

