Basic quantum algorithms: Deutsch / Deutsch-Jozsa

Yipeng Huang
Rutgers University
February 7, 2024

$$
\begin{aligned}
& x z \\
& = \\
& =\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
& y=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \\
& \\
& i x z=y
\end{aligned}
$$

Guaternions
Ponli mbilrcies.

Promise algorithms vs. unstructured search

Quantum algorithms offer exponential speedup in "promise "problems
A progression of related algorithms:
19921. Deutsch's

- ${ }^{2}$. Simon's

1996 5. Thor's $\underset{\sim}{\text { Shouts }} \in$
\rightarrow 2. Deutsch-Jozsa PA 1

- 3. Bernstein-Vazirani

-正

a promise about

Table of contents

$n=1$
Deutsch's algorithm: simplest quantum algorithm showing advantage vs. classical Problem description
Circuit diagram and what is in the oracle
Demonstration of Deutsch-Jozsa for the $n=1$ case
Deutsch-Jozsa programs and systems
$n>1$
Deutsch-Jozsa algorithm: extending Deutsch's algorithm to more qubits
The state after applying oracle U
Lemma: the Hadamard transform
The state after the final set of Hadamards
Probability of measuring upper register to get 0

Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

A Heist

- You break into a bank vault. The bank vault has 2^{n} bars. Three possibilities: all are gold, half are gold and half are fake, or all are fake.
- Even if you steal just one gold bar, it is enough to fund your escape from the country, forever evading law enforcement.
- You do not want to risk stealing from a bank vault with only fake bars.
- You have access to an oracle $f(x)$ that tells you if gold bar x is real.
- Using the oracle sounds the alarm, so you only get touse it once.

Deutsch-Jozsa algorithm: simplest quantum algorithm showing advantage vs. classical

More formal description

- The 2^{n}. bars are either fake or gold. $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
- Three possibilities:

1. All are fake. f is constant. $f(x)=0$ for all $x \in\{0,1\}^{n}$. \qquad
2. All are gold. f is constant. $f(x)=1$ for all $x \in\{0,1\}^{n} . \lessdot$
3. Half fake half gold. f is balanced.

$$
\left|\left\{x \in\{0,1\}^{n}: f(x)=0\right\}\right|=\mid\left\{x \in\{0,1\}^{n}: \underline{f(x)=1\}} \mid=2^{n-1}\right.
$$

- The oracle U works as follows: $\underline{U|c\rangle|t\rangle}=|c\rangle|t \oplus f(c)\rangle$
- Try deciding if f is constant or balanced using oracle U only once.

What is in the oracle

For $n=1$, four possibilities

	f_{0}	f_{1}	f_{2}	f_{3}
$\mathrm{f}(0)$	0 Sar	0 0 $1 / 2$	$1 / 21 / 1$.	1. rear
$\mathrm{f}(1)$	0 Jux	$1 / 2 / 2$	$0 / 2 / 2$	Sen
	f is constant 0	f is balanced	f is balanced	f is constant 1

$$
f_{0}=U_{f_{0}} \frac{1}{2}\left[\begin{array}{c}
+1 \\
-1 \\
+1 \\
-1
\end{array}\right]=I \otimes I \frac{1}{2}\left[\begin{array}{c}
+1 \\
-1 \\
+ \\
-1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
+1 \\
-1 \\
+ \\
-1
\end{array}\right]=|t\rangle \otimes|-\rangle
$$

$$
\begin{aligned}
& f_{2}=U_{f_{2}} \frac{1}{2}\left[\begin{array}{c}
+1 \\
-1 \\
-1 \\
-1
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 04
\end{array}\right] \frac{1}{2}\left[\begin{array}{c}
4 \\
-1 \\
-1 \\
41 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
\frac{1}{2} \\
41 \\
+1 \\
-1
\end{array}\right]=-|\rightarrow \otimes| \rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \text { chot }=|00\rangle \\
&\rightarrow \mid 00) \\
&(015 \rightarrow|01\rangle \\
&(10\rangle\rightarrow 111) \\
&(11>\rightarrow 110\rangle \\
&\left(\frac{I+X}{2}\right) Q\left(\frac{I-X}{2}\right)
\end{aligned}
$$

Cnit IL croot i II
crot Ix cnot i

$$
\begin{aligned}
& (I \otimes X) C n=t \\
& =\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \varepsilon\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{gathered}
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \\
\\
=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\\
=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right), I \mathbb{X}
\end{gathered}
$$

cnot: $\begin{aligned} & \text { II } \rightarrow \text { II } \\ & \text { IX } \rightarrow \text { IX }\end{aligned}$

$$
X I \rightarrow \overline{X X}
$$

$$
X X>\overline{X I}
$$

$$
\begin{aligned}
& \text { Cnot XI cnot } \\
& \left(\begin{array}{lll}
1 & & \\
& 1 & 1
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{llll}
10 & 0 & 0 \\
0 & 10 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lllll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)=X X \\
& \left(\frac{I+x}{2}\right) \otimes\left(\frac{I-x}{2}\right) \xrightarrow{\operatorname{Cnot}}\left(\frac{I-x}{2}\right) \otimes\left(\frac{I-x}{l}\right) \\
& \Rightarrow \frac{I-I x+x I-x x \xrightarrow{c o n t}}{4} \frac{I-I x-x I+x x}{q}
\end{aligned}
$$

Demonstration of Deutsch-Jozsa for the $n=1$ case

Output of circuit is $c=0$ iff f is constant

1. Initial state: $|c\rangle \otimes|t\rangle=|0\rangle \otimes|1\rangle=|0\rangle|1\rangle=|01\rangle$
2. After first set of Hadamard\&:H®H$(|0\rangle \otimes|1\rangle)=H|0\rangle \otimes H|1\rangle-|+\rangle \otimes|-\rangle=$

$$
\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right) \otimes\left(\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle\right)=\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

From here, let's take an aside via matrix-vector multiplication to build intuition with interference and phase kickback.

Demonstration of Deutsch-Jozsa for the $n=1$ case

Output of circuit is $c=0$ iff f is constant

1. Initial state: $|c\rangle \otimes|t\rangle=|0\rangle \otimes|1\rangle=|0\rangle|1\rangle=|01\rangle$
2. After first set of Hadamards: $H \otimes H(|0\rangle \otimes|1\rangle)=|+\rangle|-\rangle=$ $\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)\left(\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle\right)=\frac{1}{2}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))$
3. After applying oracle U :

$$
\begin{aligned}
& U \frac{1}{2}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))=\frac{1}{2}(|0\rangle(|f(0) \oplus 0\rangle-|f(0) \oplus 1\rangle)+ \\
& |1\rangle(|f(1) \oplus 0\rangle-|f(1) \oplus 1\rangle))=\frac{1}{2}(|0\rangle(|f(0)\rangle-|f(\overline{0})\rangle)+|1\rangle(|f(1)\rangle-|f(\overline{1})\rangle))
\end{aligned}
$$

Demonstration of Deutsch-Jozsa for the $n=1$ case

Output of circuit is $c=0$ iff f is constant

1. Initial state: $|c\rangle \otimes|t\rangle=|0\rangle \otimes|1\rangle=|0\rangle|1\rangle=|01\rangle$
2. After first set of Hadamards: $\frac{1}{2}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))$
3. After applying oracle U : $U \frac{1}{2}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))=$

$$
\frac{1}{2}(|0\rangle(|f(0)\rangle-|\overline{f(0)}\rangle)+|1\rangle(|f(1)\rangle-|f \overline{(1)}\rangle))
$$

4. This last expression can be factored depending on f :

$$
\begin{aligned}
& U \frac{1}{2}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))= \\
& \left\{\begin{array}{l}
\frac{1}{2}(|0\rangle+|1\rangle)(|f(0)\rangle-|f(0)\rangle) \text { if } f(0)=f(1) \\
\frac{1}{2}(|0\rangle-|1\rangle)(|f(0)\rangle-|f \overline{(0)}\rangle) \text { if } f(0) \neq f(1)
\end{array}=\left\{\begin{array}{l}
|+\rangle|-\rangle \text { if } f(0)=f(1) \\
|-\rangle|-\rangle \text { if } f(0) \neq f(1)
\end{array}\right.\right.
\end{aligned}
$$

The trick where oracle's output on $|t\rangle$ affects phase of $|c\rangle$ is called phase kickback.

Demonstration of Deutsch-Jozsa for the $n=1$ case

Output of circuit is $c=0$ iff f is constant

1. Initial state: $|c\rangle \otimes|t\rangle=|0\rangle \otimes|1\rangle=|0\rangle|1\rangle=|01\rangle$
2. After first set of Hadamards: $\frac{1}{2}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))$
3. After applying oracle U :

$$
U_{2}^{\frac{1}{2}}(|0\rangle(|0\rangle-|1\rangle)+|1\rangle(|0\rangle-|1\rangle))=\left\{\begin{array}{l}
|+\rangle|-\rangle \text { if } f(0)=f(1) \\
|-\rangle|-\rangle \text { if } f(0) \neq f(1)
\end{array}\right.
$$

4. After applying second H on top qubit:

$$
\left\{\begin{array}{l}
H \otimes I(|+\rangle|-\rangle)=|0\rangle|-\rangle \text { if } f(0)=f(1) \\
H \otimes I(|-\rangle|-\rangle)=|1\rangle|-\rangle \text { if } f(0) \neq f(1)
\end{array}\right.
$$

Deutsch-Jozsa programs and systems

Algorithm

David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation. 1992.

Programs
Google Cirq programming example.
Implementation

- Mach-Zehnder interferometer implementation.
https://www.st-andrews.ac.uk/physics/quvis/simulations_ html5/sims/SinglePhotonLab/SinglePhotonLab.html
- Ion trap implementation. Gulde et al. Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer. Letters to Nature. 2003.

Mach-Zehnder interferometer implementation of Deutsch's algorithm

$$
|0\rangle \xrightarrow{H}|+\rangle=\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]\left\{\begin{array}{ll}
\xrightarrow{I}|+\rangle=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] & \xrightarrow{H}|0\rangle \\
Z \\
\xrightarrow{-Z}-\rangle=\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right] & \xrightarrow{H}|1\rangle \\
\xrightarrow{-Z Z=-I}-\left[\begin{array}{c}
\frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] & \xrightarrow{H}-|1\rangle \\
& {\left[\begin{array}{c}
\frac{-1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right]}
\end{array} \xrightarrow{H}-|0\rangle\right.
$$

Table of contents

Deutsch's algorithm: simplest quantum algorithm showing advantage vs. classical Problem description
Circuit diagram and what is in the oracle
Demonstration of Deutsch-Jozsa for the $n=1$ case
Deutsch-Jozsa programs and systems

Deutsch-Jozsa algorithm: extending Deutsch's algorithm to more qubits
The state after applying oracle U
Lemma: the Hadamard transform
The state after the final set of Hadamards
Probability of measuring upper register to get 0

Deutsch-Jozsa algorithm: Deutsch's algorithm for the $n>1$ case

The state after the first set of Hadamards

1. Initial state: $|c\rangle \otimes|t\rangle=|0\rangle^{\otimes n} \otimes|1\rangle=|0 \ldots 0\rangle|1\rangle=|0 \ldots 01\rangle$
2. After first set of Hadamards: $|+\rangle^{\otimes n} \otimes|-\rangle=\frac{1}{2^{n / 2}} \sum_{c=0}^{2^{n}-1}|c\rangle \otimes|-\rangle$

Deutsch's algorithm: Deutsch-Jozsa for the $n=1$ case

The state after applying oracle U

1. Initial state: $|c\rangle \otimes|t\rangle=|0\rangle^{\otimes n} \otimes|1\rangle=|0 \ldots 0\rangle|1\rangle=|0 \ldots 01\rangle$
2. After first set of Hadamards: $|+\rangle^{\otimes n} \otimes|-\rangle=\frac{1}{2^{n / 2}} \sum_{c=0}^{2^{n}-1}|c\rangle \otimes|-\rangle$
3. After applying oracle U :

$$
\begin{aligned}
U\left(|+\rangle^{\otimes n} \otimes|-\rangle\right) & =\frac{1}{2^{n / 2}} \sum_{c=0}^{2^{n}-1}|c\rangle \otimes\left(\frac{|f(c)\rangle-|f(\bar{c})\rangle}{\sqrt{2}}\right) \\
& =\frac{1}{2^{n / 2}} \sum_{c=0}^{2^{n}-1}(-1)^{f(c)}|c\rangle \otimes\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
\end{aligned}
$$

Lemma: the Hadamard transform

$$
H^{\otimes n}|c\rangle=\frac{1}{2^{n / 2}} \sum_{m=0}^{2^{n}-1}(-1)^{c \cdot m}|m\rangle
$$

$$
\begin{aligned}
& H^{\otimes n}|c\rangle \\
& =H\left|c_{0}\right\rangle \otimes H\left|c_{1}\right\rangle \otimes \ldots \otimes H\left|c_{n-1}\right\rangle \\
& =\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{c_{0}}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{c_{1}}|1\rangle\right) \otimes \ldots \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{c_{n-1}}|1\rangle\right) \\
& =\frac{1}{2^{n / 2}} \sum_{m=0}^{2^{n}-1}(-1)^{c_{0} m_{0}+c_{1} m_{1}+\ldots+c_{n-1} m_{n-1}} \bmod 2|m\rangle
\end{aligned}
$$

- Try it out for $n=1: H^{\otimes 1}|c\rangle=\frac{1}{2^{1 / 2}} \sum_{m=0}^{2^{1}-1}(-1)^{c \cdot m}|m\rangle=$

$$
\frac{1}{\sqrt{2}}(-1)^{0}|0\rangle+\frac{1}{\sqrt{2}}(-1)^{c}|1\rangle= \begin{cases}\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle=|+\rangle & \text { if }|c\rangle=|0\rangle \\ \frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle=|-\rangle & \text { if }|\mathcal{c}\rangle=|1\rangle\end{cases}
$$

Deutsch-Jozsa algorithm: Deutsch's algorithm for the $n>1$ case

The state after applying oracle U

1. Initial state: $|c\rangle \otimes|t\rangle=|0\rangle^{\otimes n} \otimes|1\rangle=|0 \ldots 0\rangle|1\rangle=|0 \ldots 01\rangle$
2. After first set of Hadamards: $|+\rangle^{\otimes n} \otimes|-\rangle=\frac{1}{2^{n / 2}} \sum_{c=0}^{2^{n}-1}|c\rangle \otimes|-\rangle$
3. After applying oracle $U: U\left(|+\rangle^{\otimes n} \otimes|-\rangle\right)=\frac{1}{2^{n / 2}} \sum_{c=0}^{2^{n}-1}(-1)^{f(c)}|c\rangle \otimes\left(\frac{|0\rangle-11\rangle}{\sqrt{2}}\right)$
4. After final set of Hadamards:

$$
\begin{array}{r}
\left(H^{\otimes n} \otimes I\right)\left(\frac{1}{2^{n / 2}} \sum_{c=0}^{2^{n}-1}(-1)^{f(c)}|c\rangle \otimes\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)\right) \\
=\frac{1}{2^{n / 2}} \sum_{c=0}^{2^{n}-1}(-1)^{f(c)}\left(\frac{1}{2^{n / 2}} \sum_{m=0}^{2^{n}-1}(-1)^{c \cdot m}|m\rangle\right) \otimes\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \\
=\frac{1}{2^{n}} \sum_{c=0}^{2^{n}-1} \sum_{m=0}^{2^{n}-1}(-1)^{f(c)+c \cdot m}|m\rangle \otimes\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
\end{array}
$$

Deutsch-Jozsa algorithm: Deutsch's algorithm for the $n>1$ case

Output of circuit is 0 iff f is constant

1. Initial state: $|c\rangle \otimes|t\rangle=|0\rangle^{\otimes n} \otimes|1\rangle=|0 \ldots 0\rangle|1\rangle=|0 \ldots 01\rangle$
2. After first set of Hadamards: $|+\rangle^{\otimes n} \otimes|-\rangle=\frac{1}{2^{n / 2}} \sum_{c=0}^{2^{n}-1}|c\rangle \otimes|-\rangle$
3. After applying oracle $U: U\left(|+\rangle^{\otimes n} \otimes|-\rangle\right)=\frac{1}{2^{n / 2}} \sum_{c=0}^{2^{n}-1}(-1)^{f(c)}|c\rangle \otimes\left(\frac{|0\rangle-11\rangle}{\sqrt{2}}\right)$
4. After final set of Hadamards: $\left(H^{\otimes n} \otimes I\right)\left(\frac{1}{2^{2 / 2}} \sum_{c=0}^{2^{n}-1}(-1)^{f(c)}|c\rangle \otimes\left(\frac{|0\rangle-11\rangle}{\sqrt{2}}\right)\right)=$

$$
\frac{1}{2^{n}} \sum_{c=0}^{2^{n}-1} \sum_{m=0}^{2^{n}-1}(-1)^{f(c)+c \cdot m}|m\rangle \otimes\left(\frac{|0\rangle-11\rangle}{\sqrt{2}}\right)
$$

5. Amplitude of upper register being $|m\rangle=|0\rangle$:

$$
\frac{1}{2^{n}} \sum_{c=0}^{2^{n}-1}(-1)^{f(c)}
$$

Deutsch-Jozsa algorithm: Deutsch's algorithm for the $n>1$ case

Output of circuit is 0 iff f is constant

1. Initial state: $|c\rangle \otimes|t\rangle=|0\rangle^{\otimes n} \otimes|1\rangle=|0 \ldots 0\rangle|1\rangle=|0 \ldots 01\rangle$
2. After first set of Hadamards: $|+\rangle^{\otimes n} \otimes|-\rangle=\frac{1}{2^{n / 2}} \sum_{c=0}^{2^{n}-1}|c\rangle \otimes|-\rangle$
3. After applying oracle $U: U\left(|+\rangle^{\otimes n} \otimes|-\rangle\right)=\frac{1}{2^{n / 2}} \sum_{c=0}^{2^{n}-1}(-1)^{f(c)}|c\rangle \otimes\left(\frac{|0\rangle-11\rangle}{\sqrt{2}}\right)$
4. After final set of Hadamards: $\left(H^{\otimes n} \otimes I\right)\left(\frac{1}{2^{2 / /}} \sum_{c=0}^{2^{n}-1}(-1)^{f(c)}|c\rangle \otimes\left(\frac{|0\rangle-11\rangle}{\sqrt{2}}\right)\right)=$

$$
\frac{1}{2^{n}} \sum_{c=0}^{2^{n}-1} \sum_{m=0}^{2^{n}-1}(-1)^{f(c)+c \cdot m}|m\rangle \otimes\left(\frac{|0\rangle-1\rangle}{\sqrt{2}}\right)
$$

5. Amplitude of upper register being $|m\rangle=|0\rangle: \frac{1}{2^{n}} \sum_{c=0}^{2^{n}-1}(-1)^{f(c)}$
6. Probability of measuring upper register to get $m=0$:

$$
\left|\frac{1}{2^{n}} \sum_{c=0}^{2^{n}-1}(-1)^{f(c)}\right|^{2}= \begin{cases}\left|(-1)^{f(c)}\right|^{2}=1 & \text { if } f \text { is constant } \\ 0 & \text { if } f \text { is balanced }\end{cases}
$$

