
1/25

C Programming: Structs, functions, memory debugging

Yipeng Huang

Rutgers University

February 8, 2024

2/25

Table of contents
Announcements

Canvas timed quiz 3 and programming assignment 1

Stack data structure: struct, push(), pop()

Understanding pass-by-value and pass-by-reference

matMul.c: Function for matrix-matrix multiplication

Bugs and debugging related pointers, malloc, free
Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

3/25

Canvas timed quiz 3 and programming assignment 1

Programming assignment 1

1. Due Friday 2/9.
2. Arrays, pointers, recursion, beginning data structures.

4/25

Table of contents
Announcements

Canvas timed quiz 3 and programming assignment 1

Stack data structure: struct, push(), pop()

Understanding pass-by-value and pass-by-reference

matMul.c: Function for matrix-matrix multiplication

Bugs and debugging related pointers, malloc, free
Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

5/25

struct

arrays vs structs

▶ Arrays group data of the same type. The [] operator accesses array elements.
▶ Structs group data of different type. The . operator accesses struct elements.

These are equivalent; the latter is shorthand:
BSTNode* root;

▶ (*root).key = key;

▶ root->key = key;

When structs are passed to functions, they are passed BY VALUE.

6/25

Table of contents
Announcements

Canvas timed quiz 3 and programming assignment 1

Stack data structure: struct, push(), pop()

Understanding pass-by-value and pass-by-reference

matMul.c: Function for matrix-matrix multiplication

Bugs and debugging related pointers, malloc, free
Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

7/25

Understanding pass-by-value and pass-by-reference

In this section, we study the push() function for a stack.
The push() function needs to make changes to the top of the stack, and return
pointers to stack elements such that the elements can later be freed from memory.

We consider four function signatures for push() that are incorrect.

1. void push (char value, struct stack s);

2. void push (char value, struct stack* s);

3. struct stack push (char value, struct stack s);

4. struct stack push (char value, struct stack* s);

And we consider two function signatures for push() that are correct.

5. void push (char value, struct stack** s);

6. struct stack* push (char value, struct stack* s);

8/25

Understanding pass-by-value and pass-by-reference

1 void push (char value, struct stack
s) { // bug in signature

2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = &s;
6

7 s = *bracket;
8

9 return;
10 }

1 int main () {
2 struct stack s;
3 push('S', s);
4 printf ("s.data = %c\n", s.data)

;
5 }

Version 1. An incorrect function signature for push().
This version of push() completely passes-by-value and has no effect on struct
stack s in main(), so s.data is uninitialized.

9/25

Understanding pass-by-value and pass-by-reference

1 void push (char value, struct stack

* s) { // bug in signature
2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = s;
6

7 s = bracket;
8

9 return;
10 }

1 int main () {
2 struct stack s;
3 push('S', &s);
4 push('C', &s);
5 // printf ("s = %p\n", s);
6 struct stack* pointer = &s;
7 printf ("pop: %c\n", pop(&

pointer));
8 printf ("pop: %c\n", pop(&

pointer));
9 }

Version 2. An incorrect function signature for push().
This version of push() also has no effect on struct stack s in main().

10/25

Understanding pass-by-value and pass-by-reference
1 struct stack push (char value,

struct stack s) { // bug in
signature

2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = &s;
6

7 s = *bracket;
8

9 return s;
10 }

Version 3. An incorrect function signature for push().
Here, we try returning an updated stack data structure via the return type of
push(). Lines 3, 7, and 9 will lead to a memory leak (pointer is lost). Line 5
assigns the next pointer to an address &s which will be out of scope in main().

11/25

Understanding pass-by-value and pass-by-reference

1 struct stack push (char value,
struct stack* s) { // bug in
signature

2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = s;
6

7 s = bracket;
8

9 return *s;
10 }

1 int main () {
2 struct stack s;
3 s = push('S', &s);
4 printf ("s.data = %c\n", s.data)

;
5 s = push('C', &s);
6 printf ("s.data = %c\n", s.data)

;
7 }

Version 4. An incorrect function signature for push().
Here, we again try returning an updated stack data structure via the return type of
push(). Lines 3, 7, and 9 will still lead to a memory leak (pointer is lost).

12/25

Understanding pass-by-value and pass-by-reference

1 void push (char value, struct stack

** s) {
2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = *s;
6

7 *s = bracket;
8

9 return;
10 }

1 int main () {
2 struct stack* s;
3 push('S', &s);
4 push('C', &s);
5 printf ("pop: %c\n", pop(&s));
6 printf ("pop: %c\n", pop(&s));
7 }

Version 5. A correct function signature for push().
struct stack* s in main() updates by passing the struct stack *
parameter via pass-by-reference, leading to the push() signature that you see
here. This matches the signature that you see for the pop() function.

13/25

Understanding pass-by-value and pass-by-reference
1 struct stack* push (char value,

struct stack* s) {
2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = s;
6

7 s = bracket;
8

9 return s;
10 }

1 int main () {
2 struct stack* s;
3 s = push('S', s);
4 s = push('C', s);
5 printf ("pop: %c\n", pop(&s));
6 printf ("pop: %c\n", pop(&s));
7 }

Version 6. A correct function signature for push().
struct stack* s updates via the return type of push() in main(), lines 3 and
4. Side note, this is similar to the function signature BSTNode* insert
(BSTNode* root, int key) shown in class on 2/4. Side note, pop() needs to
return the character data, so pop() cannot have a similar function signature.

14/25

Table of contents
Announcements

Canvas timed quiz 3 and programming assignment 1

Stack data structure: struct, push(), pop()

Understanding pass-by-value and pass-by-reference

matMul.c: Function for matrix-matrix multiplication

Bugs and debugging related pointers, malloc, free
Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

15/25

matMul.c: Function for matrix-matrix multiplication

What to pay attention to

▶ How matMulProduct result is given back to caller of function.
▶ How and where memory is allocated and freed.

16/25

Why matMul() is written that way

The matMul function signature in the
provided example code.

1 void matMul (
2 unsigned int l,
3 unsigned int m,
4 unsigned int n,
5 int** matrix_a,
6 int** matrix_b,
7 int** matMulProduct
8);

A more "natural" function signature with
return. How to implement?

1 int** matMul (
2 unsigned int l,
3 unsigned int m,
4 unsigned int n,
5 int** matrix_a,
6 int** matrix_b
7);

17/25

Why matMul() is written that way

The matMul function signature in the
provided example code. Caller of
matMul allocates memory.

1 void matMul (
2 unsigned int l,
3 unsigned int m,
4 unsigned int n,
5 int** matrix_a,
6 int** matrix_b,
7 int** matMulProduct
8);

Suppose we want matMul() to be in
charge of allocating memory. How to
implement?

1 void matMul (
2 unsigned int l,
3 unsigned int m,
4 unsigned int n,
5 int** matrix_a,
6 int** matrix_b,
7 int*** matMulProduct
8);

18/25

Table of contents
Announcements

Canvas timed quiz 3 and programming assignment 1

Stack data structure: struct, push(), pop()

Understanding pass-by-value and pass-by-reference

matMul.c: Function for matrix-matrix multiplication

Bugs and debugging related pointers, malloc, free
Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

19/25

Failure to free

1 #include <stdlib.h>
2 #include <stdio.h>
3

4 int main () {
5

6 int* pointer0 = malloc(sizeof(int));
7 *pointer0 = 100;
8 printf("*pointer0 = %d\n", *pointer0);
9

10 }

Note: calloc() functions like malloc(), but calloc() initializes memory to zero while
malloc() offers no such guarantee.

Memory leaks
Have you ever had to restart software or hardware to recover it?
Debug by compilation in GCC, running with Valgrind, Address Sanitizer

20/25

Use after free

1 int* pointer0 = malloc(sizeof(int));
2

3 printf("pointer0 = %p\n", pointer0);
4 *pointer0 = 100;
5 printf("*pointer0 = %d\n", *pointer0);
6

7 free(pointer0);
8 pointer0 = NULL;
9

10 printf("pointer0 = %p\n", pointer0);
11 *pointer0 = 10;
12 printf("*pointer0 = %d\n", *pointer0);

Dangling pointers

▶ One defensive programming style is to set any freed pointer to NULL.
▶ Debug by running with Valgrind, Address Sanitizer.

21/25

Pointer aliasing
1 int* pointer0 = malloc(sizeof(int));
2 int* pointer1 = pointer0;
3

4 *pointer0 = 100;
5 printf("*pointer1 = %d\n", *pointer1);
6

7 *pointer0 = 10;
8 printf("*pointer1 = %d\n", *pointer1);
9

10 free(pointer0);
11 pointer0 = NULL;
12

13 *pointer1 = 1;
14 printf("*pointer1 = %d\n", *pointer1);

Debug by running with Valgrind, Address Sanitizer

Pointer aliasing and overhead of garbage collection

▶ Java garbage collection tracks dangling pointers but costs performance.
▶ C requires programmer to manage pointers but is more difficult.

22/25

Pointer typing

1 unsigned char n = 2;
2 unsigned char m = 3;
3

4 unsigned char ** p;
5 p = calloc(n, sizeof(unsigned char));
6

7 for (int i = 0; i < n; i++)
8 p[i] = calloc(m, sizeof(unsigned char));
9

10 for (int i = 0; i < n; i++)
11 for (int j = 0; j < m; j++) {
12 p[i][j] = 10*i+j;
13 printf("p[%d][%d] = %d\n", i, j, p[i][j]);
14 }

Defend using explicit pointer casting.

23/25

Table of contents
Announcements

Canvas timed quiz 3 and programming assignment 1

Stack data structure: struct, push(), pop()

Understanding pass-by-value and pass-by-reference

matMul.c: Function for matrix-matrix multiplication

Bugs and debugging related pointers, malloc, free
Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

24/25

Non existent memory

1 #include <stdlib.h>
2 #include <stdio.h>
3

4 int main () {
5

6 int **x = malloc(sizeof(int*));
7 **x = 8;
8 printf("x = %p\n", x);
9 printf("*x = %p\n", *x);

10 printf("**x = %d\n", **x);
11 fflush(stdout);
12

13 }

Debug by running with Valgrind, Address Sanitizer

25/25

Returning null pointer

1

2 int* returnsNull () {
3 int val = 100;
4 return &val;
5 }
6

7 int main () {
8

9 int* pointer = returnsNull();
10 printf("pointer = %p\n", pointer);
11 printf("*pointer = %d\n", *pointer);
12

13 }

Prevent using -Werror compilation flag.

	Announcements
	Canvas timed quiz 3 and programming assignment 1

	Stack data structure: struct, push(), pop()
	Understanding pass-by-value and pass-by-reference
	matMul.c: Function for matrix-matrix multiplication
	Bugs and debugging related pointers, malloc, free
	Failure to free
	Use after free
	Pointer aliasing
	Pointer typing

	Bugs and debugging related C memory model
	Non existent memory
	Returning null pointer

