
1/42

C Programming: Debugging, Bits, Bytes, Integers

Yipeng Huang

Rutgers University

February 13, 2024

2/42

Table of contents
Strategies for correct software & debugging
Announcements

Canvas timed quiz 3 and programming assignment 2
Reading assignment: CS:APP Chapters 2.1, 2.2, 2.3

Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

3/42

Challenges in CS programming assignments, strategies to get
unstuck, resources

In CS 111, 112, 211, what are reasons programming assignments are
challenging?
I Not sure where to start.
I It isn’t working.
I The CS 211 teachers say that knowing Java helps programming in C, but C is

nothing like Java.

What are strategies to get unstuck?

4/42

Lessons and ways in which programming in class is not like the real
world.

I Coding deliberately is important. Have a plan. Understand the existing code.
Test assumptions. Don’t code by trial and error.

I Less code is better, and more likely to be correct.
I Reading code is as important and takes more time than writing code.

5/42

Figure: Software engineering for correctness

6/42

Strategies for debugging

Reduce to minimum example
I Check your assumptions.
I Use minimum example as basis for searching for help.

Debugging techniques
I Use assertions.
I Use debugging tools: Valgrind, Address Sanitizer, GDB.
I Use debugging printf statements.

7/42

Table of contents
Strategies for correct software & debugging
Announcements

Canvas timed quiz 3 and programming assignment 2
Reading assignment: CS:APP Chapters 2.1, 2.2, 2.3

Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

8/42

Canvas timed quiz 3 and programming assignment 2

Programming assignment 2

1. Due Friday 2/23.
2. Graph algorithms and hash table.

9/42

Reading assignment: CS:APP Chapters 2.1, 2.2, 2.3

All about integers

1. We will launch in to our chapter on representing data in computers
2. First: all about integers, signs, capacities, operations.

bitbyles
our

10/42

Table of contents
Strategies for correct software & debugging
Announcements

Canvas timed quiz 3 and programming assignment 2
Reading assignment: CS:APP Chapters 2.1, 2.2, 2.3

Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

numberranges
varioses

11/42

Why binary

Figure:

0 0 0 9

nttitE

hour

Analog Digital Quantum

10sfiles
1960 2825

12/42

Decimal, binary, octal, and hexadecimal

Decimal Binary Octal Hexadecimal
0 0b0000 0o0 0x0
1 0b0001 0o1 0x1
2 0b0010 0o2 0x2
3 0b0011 0o3 0x3
4 0b0100 0o4 0x4
5 0b0101 0o5 0x5
6 0b0110 0o6 0x6
7 0b0111 0o7 0x7

Decimal Binary Octal Hexadecimal
8 0b1000 0o10 0x8
9 0b1001 0o11 0x9

10 0b1010 0o12 0xA
11 0b1011 0o13 0xB
12 0b1100 0o14 0xC
13 0b1101 0o15 0xD
14 0b1110 0o16 0xE
15 0b1111 0o17 0xF

In C, format specifiers for printf() and fscanf():
1. decimal: ’%d’
2. binary: none
3. octal: ’%o’
4. hexadecimal: ’%x’

Base 10

111191
look lok 1000 100 10 1

9400kt9410kt 9610004 9 100 91049

1M 1
Base 2

11 11 2221122
014 512 256 128 69 32 16 8 4 21

1 1024 1 512 1 1 256 9 128 11 64 1 32

41 16 1 8 1 4 e x2 al

2 1 2048 1 2047

210 1024
2 2048

Base f

s

0 512 1 64 1 8 1 1
73

print Yodin 090

13/42

Decimal, binary, octal, and hexadecimal

How to represent the range of unsigned char in each?
Unsigned char is one byte, 8 bits.

1. decimal: 0 to 255
2. binary: 0b0 to 0b11111111
3. octal: 0 to 0o377 (group by 3 bits)
4. hexadecimal: 0x00 to 0xFF (group by 4 bits)

256 1 28 1 06100000000 061

binary
061111 in

512 6481
1

hexCoxEt

14/42

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255
???

#000000 #FFFFFF #6A757C #CC0033

as opposedto

6 16 10 0 75 07C Cmyk
7 16 5 7 16 c2106
117

24
12

033
3 1613

464757C CC0033000000
106,111,124 204 0,512

white OCC 12 16 12

Ffs 255
04

15/42

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255

#000000 #FFFFFF #6A757C #CC0033

16/42

Representing characters

I char is a 1-byte, 8-bit
data type.

I ASCII is a 7-bit
encoding standard.

I "man ascii" to see
Linux manual.

I Compile and run
ascii.c to see it in
action.

I Some interesting
characters: 7 (bell), 10
(new line), 27 (escape).

Figure: ASCII character set. Image credit Wikimedia

I

C

17/42

Bitwise operations

Why are bitwise operations important?
I Network and UNIX settings using bit masks (e.g., umask)
I Hardware and microcontroller programming (e.g., Arduinos)
I Instruction set architecture encodings (e.g., ARM, x86)

aser

ascii

group Y all
4 I 040 10

0

18/42

Bitwise operations

˜: bitwise NOT
unsigned char a = 128

a = 0b1000_0000
˜a = ˜0b1000_0000

= 0b0111_1111
= 127

b ˜ b
0 1
1 0

int a 128

print_f d n Na

127

6116842
128

6437168421

19/42

Bitwise operations

&: bitwise AND

3&1 = 0b11&0b01
= 0b01
= 1

a b a & b
0 0 0
0 1 0
1 0 0
1 1 1

printff d 399

3 0600011

20/42

Bitwise operations

|: bitwise OR

3|1 = 0b11|0b01
= 0b11
= 3

2|1 = 0b10|0b01
= 0b11
= 3

a b a | b
0 0 0
0 1 1
1 0 1
1 1 1

1 us 11

bitwiseOR logial OR
printf Yodius3 1

i I
2 2060010

1

21/42

Bitwise operations

ˆ: bitwise XOR

3 ^ 1 = 0b11 ^ 0b01
= 0b10
= 2

a b a ˆ b
0 0 0
0 1 1
1 0 1
1 1 0

printf yo'd 3 1
THIS IS NOT 3

3 050011

n

22/42

inplaceSwap.c: Swapping variables without temp variables.

How does it work?

y Ex a yl
x x EXAMY E ay

ayY Y
yYalxay

galgax y
yay ax yex
ON

23/42

Don’t confuse bitwise operators with logical operators

Bitwise operators
I ˜
I &
I |
I ˆ

Logical operators
I !
I &&
I ||
I != (for bool type)

24/42

Table of contents
Strategies for correct software & debugging
Announcements

Canvas timed quiz 3 and programming assignment 2
Reading assignment: CS:APP Chapters 2.1, 2.2, 2.3

Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

25/42

Representing negative and signed integers

Ways to represent negative numbers

1. Sign magnitude
2. 1s’ complement
3. 2’s complement

26/42

Representing negative and signed integers

Sign magnitude
Flip leading bit.

27/42

Representing negative and signed integers

1s’ complement
I Flip all bits
I Addition in 1s’ complement is sound
I In this encoding there are 2 encodings for 0
I -0: 0b1111
I +0: 0b0000

28/42

Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

I what is the most positive value you can represent? 127
I what is the most negative value you can represent? -128
I how to represent -1? 11111111
I how to represent -2? 11111110

29/42

Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

I MSB: 1 for negative
I To make a number negative: flip all bits and add 1.
I Addition in 2’s complement is sound

30/42

Importance of paying attention to limits of encoding

0 2 4 6 8 10
12 14

0
2

4
6

8
10

12
14

0
4
8

12
16
20
24
28
32

Integer addition

Figure: Image credit: CS:APP

0 2 4 6 8 10 12 14
0

2
4

6
8

10
12

14

0
2
4
6
8

10
12
14
16

Unsigned addition (4-bit word)

Normal

Overflow

Figure: Image credit: CS:APP

31/42

Importance of paying attention to limits of encoding

0 2 4 6 8 10
12 14

0
2

4
6

8
10

12
14

0
4
8

12
16
20
24
28
32

Integer addition

Figure: Image credit: CS:APP

-8 -6 -4 -2 0 2 4 6
-8

-6
-4

-2
0

2
4

6

-8
-6
-4
-2
0
2
4
6
8

Two's complement addition (4-bit word)

Normal

Positive
overflow

Negative
overflow

Figure: Image credit: CS:APP

https://www.theatlantic.com/technology/archive/2014/12/

how-gangnam-style-broke-youtube/383389/

https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/
https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/

32/42

Table of contents
Strategies for correct software & debugging
Announcements

Canvas timed quiz 3 and programming assignment 2
Reading assignment: CS:APP Chapters 2.1, 2.2, 2.3

Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

33/42

Programming assignment 2: Graphs, trees, queues, hashes

Programming Assignment 2 parts

1. edgelist: loading and printing a graph
2. isTree: needs either DFS (stack) or BFS (queue)
3. mst: a greedy algorithm
4. solveMaze: needs either DFS (stack) or BFS (queue)
5. findCycle: needs either DFS (stack) or BFS (queue)
6. hashTable: a separate chaining hash table

34/42

Using graphutils.h

I The adjacency list representation
I The edgelist representation
I The query

35/42

Binary search tree

Figure: BST with input sequence 7, 4, 7, 0, 6, 5, 2, 3. Duplicates ignored.

36/42

Binary search tree level order traversal

Figure: Level order, left-to-right traversal would return 7, 4, 0, 6, 2, 5, 3.

37/42

Binary search tree traversal orders

Breadth-first
I For example: level-order.
I Needs a queue (first in first out).
I Today in class we will build a BST and a Queue.

Depth-first
I For example: in-order traversal, reverse-order traversal.
I Needs a stack (first in last out).

38/42

typedef

Why types are important
I Natural language has nouns, verbs, adjectives, adverbs.
I Type safety.
I Interpretation vs. compilation.

39/42

BSTNode

typedef struct BSTNode BSTNode;

struct BSTNode {

int key;

BSTNode* l_child; // nodes with smaller key will be in left subtree

BSTNode* r_child; // nodes with larger key will be in right subtree

};

40/42

QueueNode, Queue

// queue needed for level order traversal

typedef struct QueueNode QueueNode;

struct QueueNode {

BSTNode* data;

QueueNode* next; // pointer to next node in linked list

};

typedef struct Queue {

QueueNode* front; // front (head) of the queue

QueueNode* back; // back (tail) of the queue

} Queue;

41/42

Let’s implement enqueue()

https://visualgo.net/en/queue

I First, consider if queue is empty.
I Then, consider if queue is not empty. Only need to touch back (tail) of the

queue.

https://visualgo.net/en/queue

42/42

Let’s implement dequeue()

https://visualgo.net/en/queue

I First, consider if queue will become empty.
I Then, consider if queue will not not empty. Only need to touch front (head) of

the queue.
Subtle point: why are the function signatures (return, parameters) of enqueue()
and dequeue() the way they are?

https://visualgo.net/en/queue

