C Programming: Debugging, Bits, Bytes, Integers

Yipeng Huang
Rutgers University

February 13, 2024

1/42

Table of contents
Strategies for correct software & debugging

Announcements
Canvas timed quiz 3 and programming assignment 2
Reading assignment: CS:APP Chapters 2.1, 2.2, 2.3
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations
Integers and basic arithmetic
Representing negative and signed integers
Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),

dequeue () 2/42

Challenges in CS programming assignments, strategies to get
unstuck, resources

In CS 111, 112, 211, what are reasons programming assignments are
challenging?

» Not sure where to start.

» Itisn’t working.

» The CS 211 teachers say that knowing Java helps programming in C, but C is
nothing like Java.

What are strategies to get unstuck?

3/42

Lessons and ways in which programming in class is not like the real
world.

» Coding deliberately is important. Have a plan. Understand the existing code.
Test assumptions. Don’t code by trial and error.

» Less code is better, and more likely to be correct.

» Reading code is as important and takes more time than writing code.

4/42

* Social
— Code reviews
— Extreme/Pair programming

* Methodological
— Design patterns
— Test-driven development
— Version control
— Bug tracking

This isn’t an either/or tradeoff... a
spectrum of methods is needed!

Even the most “formal” argument
can still have holes:
+ Did you prove the right thing?
o Technological + Do your assumptions match reality?
— “lint” tools, static analysis
— Fuzzers, random testing

+ Knuth: “Beware of bugs in the above
code; | have only proved it correct, not
tried it.”

* Mathematical
— Sound type systems
— Formal verification

12 /15

From: https://www.seas.upenn.edu/~cis500/current/lectures/lec01.pdf

oA 52

Strategies for debugging

Reduce to minimum example

» Check your assumptions.

» Use minimum example as basis for searching for help.

Debugging techniques

» Use assertions.
» Use debugging tools: Valgrind, Address Sanitizer, GDB.
» Use debugging printf statements.

6/42

Table of contents
Strategies for correct software & debugging

Announcements
Canvas timed quiz 3 and programming assignment 2
Reading assignment: CS:APP Chapters 2.1, 2.2, 2.3
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations
Integers and basic arithmetic
Representing negative and signed integers
Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),

dequeue () 7/42

Canvas timed quiz 3 and programming assignment 2

Programming assignment 2

1. Due Friday 2/23.
2. Graph algorithms and hash table.

8/42

Reading assignment: CS:APP Chapters 2.1, 2.2, 2.3

All about integers

1. We will launch in to our chapter on representing data in computers

2. First: all about integers, signs, capacities, operations.

e

9/42

Table of contents
Strategies for correct software & debugging

Announcements
Canvas timed quiz 3 and programming assignment 2
Reading assignment: CS:APP Chapters 2.1, 2.2, 2.3
_ Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations VL(/\/VWW/(((/wté% | o6
Integers and basic arithmetic 0%
Representing negative and signed integers
Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),
dequeue ()

C/d

10/42

Why binary

Everything is bits

m EachbitisOor1l

m By encoding/interpreting sets of bits in various ways
= Computers determine what to do (instructions)
= .. and represent and manipulate numbers, sets, strings, etc...
m Why bits? Electronic Implementation
® Easy to store with bistable elements
= Reliably transmitted on noisy and inaccurate wires

— 0 > le 1 >| — Q0 —
1.1V —
0.9v —
0.0V —
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

11/42

0F g1 ---

ALV\A(L()) — ijf“(@(z — @ucxtﬁu/w
oo
AN Bk

(450 460} = oo

Decimal, binary, octal, and hexadecimal

Decimal Binary Octal Hexadecimal Decimal Binary Octal Hexadecimal
0 0b0000 000 0x0 8 0b1000 0010 0x8
1 0b0001 Ool 0x1 9 0b1001 0Ooll 0x9
2 0b0010 0o2 0x2 10 0b1010 0Ool2 OxA
3 0b0011 0Oo3 0x3 11 0b1011 0013 0xB
4 0b0100 0Oo4 Ox4 12 0b1100 0Ool4 0xC
5 0b0101 005 0x5 13 0b1101 0015 0xD
6 0b0110 0o6 0x6 14 O0b1110 Oolé6 OxE
7 0b0111 0o7 0x7 15 0b1111 0ol7 OxF

In C, format specifiers for printf() and fscanf():

1. decimal: "%d’

2. binary: none
3. octal: %0’

4. hexadecimal: "%x’

12/42

2ae o
111114¢C

od¢ ok low (0 (@ 1

éjx(OOk-{ C%K(Oé-(' ?}Q(Om‘f 756(00 2l 9}«/017
s iM“l
Lose -

17 1 1 {141‘[121

e S —
—_—

oy s ol @l ek Fr (¢ @411

{[x(oZ(+1,~<§}u A2l + 4 < SZ(P 14 X6y « [<32
t(x(6 «(xd <« =% ¢ (x2 <(sf

sz (= gl - [= 24T

(O: (2((
z“» Togd

Bose

e sy, 010)

Decimal, binary, octal, and hexadecimal

How to represent the range of unsigned char in each?
Unsigned char is one byte, 8 bits.

1. decimal: 0 to 255 6/

2. binary: 0b0 to Ob11111111 Zgé- ' - £ (P_ (- Ob[OOQDOOCD _ Db(

3. octal: 0 to 00377 (gTC)u;T)y3bits) T Ob (LT (4

4. hexadecimal: 0x00 to OxFF (group bm 0> 171 6@)257
| 0o = ——— "4

s? 6¢ & |

< - bﬁ,wyvj Obl(c(=111] 63
\
hux o

13/42

Often encountered use of hexadecimal: RGB colors 01§ OWO led £,
Lo fo 075 0 cmlk

= (06 = /bt S :7><(6‘f”(;7
=t 112 £12
Red, green, blue values ranging from 0-255 =24 O)Qzé

77 = 3¢ 43
#000000 #FFFFFF #6A757C #CC0033 = C l

#OUOOOO A 7S 70 # (0033
. (r()e)m)@fé) Czot ,0, 51
wivite T T T Ol 127 412
4 FL7EPE = 2

(25§, 255, 255)

14/42

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255

#000000 #FFFFEFF #6A757C #CC0033

15/42

Representing characters //
(/ USASCIl code chart

. . b % |° b 1% ['e |0 " v
» char is a 1-byte, 8-bit AP ol i "of "i] %ol "] Tof
d e Palb, b, b, [
ata type. vl o] [row 0 I 2 3 4 5 6 7
:) ololo[o] O [nuL Joe [sp | o @ | p \ P
encoding standard. ofojJrjof 2 JsixJoce | * | 2 | 8 | R | b |«
' 3 ojof{ir |1] 3 JETX |DC3 | # 3 C S c s
» "man ascii" to see C/ C oli1]olo| 4 [eor [oca | 4 D T d 1
i 1 o, o|)yjo| 5 ENQ | NAK % 5 [3 U e v
Inux manual. ol1[110] 6 [ack [syn | & | © F v f v
. o1l 7 BEL | ETB ’ 7 G w 9 w
> Compﬂe and run 1{olofo| 8 | 8s [can | « 8 H X h x
ascii.c to see it in IJofofiI | O | HT | EM) 9 1 Y i y
. 1jo}1]0] 10 | LF | sus #* : J 2 j z
action. r{of{ir v] 1 VT | ESC + : K C K (
> . . rf1]ojo] |2 FF | Fs . < L \ l |
Some interesting T o T3 Terles [= 1= [w3 = 1)
characters: 7 (bell), 10 i {ol 14 [solRrs | . | >N |~ [n [~
1fejr1v 15 1 s1 | us / ?) — o | OEL

(new line), 27 (escape).

Figure: ASCII character set. Image credit Wikimedia

16/42

Bitwise operations

/60\; m c oy

(- rw;((0] th(iooo
4 \CO-Fl
C”Z"'&) . T 204940
Why are bitwise operations important? . O

» Network and UNIX settings using bit masks (e.g., umask)
» Hardware and microcontroller programming (e.g., Arduinos)

» Instruction set architecture encodings (e.g., ARM, x86)

17/42

Bitwise operations

~: bitwise NOT

unsigned char a —(1%28

— Q= Obl%)(O% O‘é)
“a = ~ObIQOO 0000
= ObOlll 1111
= 127

- 12§

ot ("% d " na)

18/42

Bitwise operations

prtl (/. , 341);

&: bitwise AND —

3&1 = 0b11&0601
= — 0601

—1

A

3 => @bOOO(\
j i;) 050000(
Ob 000 (|

_ - O O

_0 = O T

—_ 0 O Ol

19/42

Bitwise operations oo

N~
| : bitwise OR it wae 0K MQ@DD"(OR./
i ‘o0 5314
3|1 = 0011|0601 P{de (7&(/\4) \ 3 1T b alb

— Ob11 g=>0boo1 0 0 0

=3 | ’Lt> Oboov\ 01 1

A — T 0 1

oboodl 1 T

2|1 = 0610|0601
— 011 2= oloolo
=3 (4 =>o0boool

20/42

Bitwise operations g
piety(ed, 3AL D
1HZy I8 NoT 3

" bitwise XOR Z=> 0boot |
a b a’b
A L= 0600l 0 0 0
3A1=00b11 A 0bOT 0 1 1
— 0b10 Ob 00{ 0 1 0 1
5 1 1 0

s

21/42

inplaceSwap.c: Swapping variables without temp variables.
N (XA j),
o K LA 3 ;K/\(Mj\r—(@)/\j
= Y: X A j j - OA
= 3A(ﬂAj); J
SyAYME e
= (jf\ﬁJAx Y= X

= O AKX
1)(;

How does it work?

Don’t confuse bitwise operators with logical operators

Bitwise operators
.
> &
> |
>

Logical operators
> |

> &&
> ||

» = (for bool type)

23/42

Table of contents
Strategies for correct software & debugging

Announcements
Canvas timed quiz 3 and programming assignment 2
Reading assignment: CS:APP Chapters 2.1, 2.2, 2.3
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations
Integers and basic arithmetic
Representing negative and signed integers
Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),

dequeue () 24/42

Representing negative and signed integers

Ways to represent negative numbers

1. Sign magnitude
2. 18’ complement

3. 2’s complement

25/42

Representing negative and signed integers

Sign magnitude
Flip leading bit.

26/42

Representing negative and signed integers

1s” complement

Flip all bits

Addition in 1s” complement is sound

In this encoding there are 2 encodings for 0
-0: Ob1111

+0: 0b0000

vvyyyvyy

27/42

Representing negative and signed integers

2’s complement

signed char weight in decimal

00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

» what is the most positive value you can represent? 127

» what is the most negative value you can represent? -128

» how to represent -1? 11111111

» how to represent -2? 11111110 28/42

Representing negative and signed integers

2’s complement

signed char weight in decimal

00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

» MSB: 1 for negative
» To make a number negative: flip all bits and add 1.

» Addition in 2’s complement is sound

29/42

Importance of paying attention to limits of encoding

Integer addition Unsigned addition (4-bit word)

Figure: Image credit: CS:APP Figure: Image credit: CS:APP

30/42

Importance of paying attention to limits of encoding

Integer addition

Two's complement addition (4-bit word)

Normal
Negative

overflow

Positive
overflow

Figure: Image credit: CS:APP Figure: Image credit: CS:APP

https://www.theatlantic.com/technology/archive/2014/12/
how—gangnam-style-broke-youtube/383389/

31/42

https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/
https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/

Table of contents
Strategies for correct software & debugging

Announcements
Canvas timed quiz 3 and programming assignment 2
Reading assignment: CS:APP Chapters 2.1, 2.2, 2.3
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations
Integers and basic arithmetic
Representing negative and signed integers
Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),

dequeue () 32/42

Programming assignment 2: Graphs, trees, queues, hashes

Programming Assignment 2 parts

1.

AN

edgelist: loading and printing a graph

isTree: needs either DFS (stack) or BFS (queue)

mst: a greedy algorithm

solveMaze: needs either DFS (stack) or BFS (queue)

findCycle: needs either DFS (stack) or BFS (queue)
hashTable: a separate chaining hash table

33/42

Using graphutils.h

» The adjacency list representation
» The edgelist representation

» The query

34/42

Binary search tree

Figure: BST with input sequence 7, 4, 7, 0, 6, 5, 2, 3. Duplicates ignored.

35/42

Binary search tree level order traversal
Figure: Level order, left-to-right traversal would return 7, 4, 0, 6, 2, 5, 3.

36/42

Binary search tree traversal orders

Breadth-first

» For example: level-order.
» Needs a queue (first in first out).

» Today in class we will build a BST and a Queue.

Depth-first
» For example: in-order traversal, reverse-order traversal.
» Needs a stack (first in last out).

37/42

typedef

Why types are important

» Natural language has nouns, verbs, adjectives, adverbs.
> Type safety.

» Interpretation vs. compilation.

38/42

BSTNode

typedef struct BSTNode BSTNode;
struct BSTNode {
int key;
BSTNode* 1_child; // nodes with smaller key will be in left s
BSTNode* r_child; // nodes with larger key will be in right s
I

39/42

QueueNode, Queue

// queue needed for level order traversal
typedef struct QueueNode QueueNode;
struct QueueNode {
BSTNodex data;
QueueNode* next; // pointer to next node in linked list
I
typedef struct Queue
QueueNodex front; // front (head) of the queue
QueueNode* back; // back (tail) of the queue
} Queue;

40/42

Let’s implement enqueue ()

https://visualgo.net/en/queue
» First, consider if queue is empty.

» Then, consider if queue is not empty. Only need to touch back (tail) of the
queue.

41/42

https://visualgo.net/en/queue

Let’s implement dequeue ()

https://visualgo.net/en/queue
» First, consider if queue will become empty.

» Then, consider if queue will not not empty. Only need to touch front (head) of
the queue.

Subtle point: why are the function signatures (return, parameters) of enqueue ()
and dequeue () the way they are?

42/42

https://visualgo.net/en/queue

