
1/25

Basic quantum algorithms: Deutsch-Jozsa,
Bernstein-Vazirani, Shor factoring classical part

Yipeng Huang

Rutgers University

February 14, 2024

H

ummm

2/25

Promise algorithms vs. unstructured search

Quantum algorithms offer exponential speedup in “promise” problems
A progression of related algorithms:

1. Deutsch’s
2. Deutsch-Jozsa
3. Bernstein-Vazirani
4. Simon’s
5. Shor’s

C

t.fi

a

3/25

Table of contents

Deutsch-Jozsa algorithm: extending Deutsch’s algorithm to more qubits
The state after applying oracle U

Lemma: the Hadamard transform
The state after the final set of Hadamards
Probability of measuring upper register to get 0

Bernstein-Vazirani algorithm: examining the Deutsch-Jozsa outputs in more detail

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

4/25

Deutsch-Jozsa algorithm: Deutsch’s algorithm for the n > 1 case

The state after the first set of Hadamards
1. Initial state: |ci ⌦ |ti = |0i⌦n ⌦ |1i = |0 . . . 0i |1i = |0 . . . 01i
2. After first set of Hadamards: |+i⌦n ⌦ |�i = 1

2n/2

P2n�1
c=0 |ci ⌦ |�i

Yo B

iffiscms.mil
willmeasure's

it
willmeasure

Bf if something else

5/25

Deutsch’s algorithm: Deutsch-Jozsa for the n = 1 case

The state after applying oracle U

1. Initial state: |ci ⌦ |ti = |0i⌦n ⌦ |1i = |0 . . . 0i |1i = |0 . . . 01i
2. After first set of Hadamards: |+i⌦n ⌦ |�i = 1

2n/2

P2n�1
c=0 |ci ⌦ |�i

3. After applying oracle U:

U

⇣
|+i⌦n ⌦ |�i

⌘
=

1
2n/2

2n�1X

c=0

|ci ⌦
✓
|f (c)i � | ¯f (c)ip

2

◆

=
1

2n/2

2n�1X

c=0

(�1)f (c) |ci ⌦
✓
|0i � |1ip

2

◆

6/25

Lemma: the Hadamard transform
H

⌦n |ci = 1
2n/2

P2n�1
m=0 (�1)c·m |mi

I

H
⌦n |ci

= H |c0i ⌦ H |c1i ⌦ . . .⌦ H |cn�1i

=
1p
2

⇣
|0i+ (�1)c0 |1i

⌘
⌦ 1p

2

⇣
|0i+ (�1)c1 |1i

⌘
⌦ . . .⌦ 1p

2

⇣
|0i+ (�1)cn�1 |1i

⌘

=
1

2n/2

2n�1X

m=0

(�1)c0m0+c1m1+...+cn�1mn�1 mod 2 |mi

I Try it out for n = 1: H
⌦1 |ci = 1

21/2

P21�1
m=0 (�1)c·m |mi =

1p
2
(�1)0 |0i+ 1p

2
(�1)c |1i =

(
1p
2
|0i+ 1p

2
|1i = |+i if |ci = |0i

1p
2
|0i � 1p

2
|1i = |�i if |ci = |1i

CM CoMotCimit ChMm
mod 2

Como GM Cnim

fliff

t.it
ii IIIIII
T

late

eg c 100 0 100 11 111 1

7/25

Deutsch-Jozsa algorithm: Deutsch’s algorithm for the n > 1 case
The state after applying oracle U

1. Initial state: |ci ⌦ |ti = |0i⌦n ⌦ |1i = |0 . . . 0i |1i = |0 . . . 01i
2. After first set of Hadamards: |+i⌦n ⌦ |�i = 1

2n/2

P2n�1
c=0 |ci ⌦ |�i

3. After applying oracle U: U

⇣
|+i⌦n ⌦ |�i

⌘
= 1

2n/2

P2n�1
c=0 (�1)f (c) |ci ⌦

⇣
|0i�|1ip

2

⌘

4. After final set of Hadamards:

�
H

⌦n ⌦ I
�✓ 1

2n/2

2n�1X

c=0

(�1)f (c) |ci ⌦
⇣ |0i � |1ip

2

⌘◆

=
1

2n/2

2n�1X

c=0

(�1)f (c)
⇣ 1

2n/2

2n�1X

m=0

(�1)c·m |mi
⌘
⌦
⇣ |0i � |1ip

2

⌘

=
1
2n

2n�1X

c=0

2n�1X

m=0

(�1)f (c)+c·m |mi ⌦
⇣ |0i � |1ip

2

⌘

8/25

Deutsch-Jozsa algorithm: Deutsch’s algorithm for the n > 1 case

Output of circuit is 0 iff f is constant

1. Initial state: |ci ⌦ |ti = |0i⌦n ⌦ |1i = |0 . . . 0i |1i = |0 . . . 01i
2. After first set of Hadamards: |+i⌦n ⌦ |�i = 1

2n/2

P2n�1
c=0 |ci ⌦ |�i

3. After applying oracle U: U

⇣
|+i⌦n ⌦ |�i

⌘
= 1

2n/2

P2n�1
c=0 (�1)f (c) |ci ⌦

⇣
|0i�|1ip

2

⌘

4. After final set of Hadamards:
�
H

⌦n ⌦ I
�✓ 1

2n/2

P2n�1
c=0 (�1)f (c) |ci ⌦

⇣
|0i�|1ip

2

⌘◆
=

1
2n

P2n�1
c=0

P2n�1
m=0 (�1)f (c)+c·m |mi ⌦

⇣
|0i�|1ip

2

⌘

5. Amplitude of upper register being |mi = |0i:

1
2n

2n�1X

c=0

(�1)f (c)

9/25

Deutsch-Jozsa algorithm: Deutsch’s algorithm for the n > 1 case
Output of circuit is 0 iff f is constant

1. Initial state: |ci ⌦ |ti = |0i⌦n ⌦ |1i = |0 . . . 0i |1i = |0 . . . 01i
2. After first set of Hadamards: |+i⌦n ⌦ |�i = 1

2n/2

P2n�1
c=0 |ci ⌦ |�i

3. After applying oracle U: U

⇣
|+i⌦n ⌦ |�i

⌘
= 1

2n/2

P2n�1
c=0 (�1)f (c) |ci ⌦

⇣
|0i�|1ip

2

⌘

4. After final set of Hadamards:
�
H

⌦n ⌦ I
�✓ 1

2n/2

P2n�1
c=0 (�1)f (c) |ci ⌦

⇣
|0i�|1ip

2

⌘◆
=

1
2n

P2n�1
c=0

P2n�1
m=0 (�1)f (c)+c·m |mi ⌦

⇣
|0i�|1ip

2

⌘

5. Amplitude of upper register being |mi = |0i: 1
2n

P2n�1
c=0 (�1)f (c)

6. Probability of measuring upper register to get m = 0:

�����
1
2n

2n�1X

c=0

(�1)f (c)

�����

2

=

(��(�1)f (c)
��2 = 1 if f is constant

0 if f is balanced

Deutsch Algo n l

Ti

c b b c

Deutsah Jogsa Algo e.g.KZ

ii.fti IEEf fiiiii I
c b b b bb b c

DJ Algo e.g.MS

fE
f fg

7 9,88 8 140balanced

i
a

10/25

Table of contents

Deutsch-Jozsa algorithm: extending Deutsch’s algorithm to more qubits
The state after applying oracle U

Lemma: the Hadamard transform
The state after the final set of Hadamards
Probability of measuring upper register to get 0

Bernstein-Vazirani algorithm: examining the Deutsch-Jozsa outputs in more detail

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

conventionalconaly

Stabilizers

ZX
significance

DJ

11/25

Table of contents

Deutsch-Jozsa algorithm: extending Deutsch’s algorithm to more qubits
The state after applying oracle U

Lemma: the Hadamard transform
The state after the final set of Hadamards
Probability of measuring upper register to get 0

Bernstein-Vazirani algorithm: examining the Deutsch-Jozsa outputs in more detail

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

12/25

The factoring problem

One way functions for cryptography

1. Multiplying two b-bit numbers: on order of b
2 time.

2. Best known classical algorithm to factor a b-bit number: on order of about 2
3p

b

time.

I Makes multiplying large primes a candidate one-way function.
I It’s an open question of mathematics to prove whether one way functions

exist.

Public key cryptography
Numberphile YouTube channel explanation of RSA public key cryptography:
https://www.youtube.com/watch?v=M7kEpw1tn50

https://www.youtube.com/watch?v=M7kEpw1tn50

13/25

The factoring problem

One way functions for cryptography

1. Multiplying two b-bit numbers: on order of b
2 time.

2. Best known classical algorithm to factor a b-bit number: on order of about 2
3p

b

time.

Quantum integer factoring algorithm
I Quantum algorithm to factor a b-bit number: b

3.
I Peter Shor, 1994.
I Important example of quantum algorithm offering exponential speedup.

14/25

Table of contents

Deutsch-Jozsa algorithm: extending Deutsch’s algorithm to more qubits
The state after applying oracle U

Lemma: the Hadamard transform
The state after the final set of Hadamards
Probability of measuring upper register to get 0

Bernstein-Vazirani algorithm: examining the Deutsch-Jozsa outputs in more detail

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

15/25

The classical part: converting factoring to order finding / period
finding

General strategy for the classical part

1. Factoring
2. Modular square root
3. Discrete logarithm
4. Order finding
5. Period finding

The fact that a quantum algorithm can support all these primitives leads to
additional ways that future quantum computing can be useful / threatening to
existing cryptography.

16/25

Factoring

N = pq

N = 15 = 3 ⇥ 5

17/25

Modular square root

Finding the modular square root

s
2 mod N = 1

s =
p

1 mod N

Trivial roots would be s = ±1.
I Are there other (nontrivial) square roots?
I For N = 15, s = ±4, s = ±11, s = ±14 are all nontrivial square roots. (Show

this).
I Later in these slides, we will see how nontrivial square roots are useful for

factoring.

18/25

Discrete log

1. Pick a that is relatively prime with N.
2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm.

For example, a=6 and n=15.

Exercise: list the possible a’s for N = 15.

19/25

Discrete log

1. Pick a that is relatively prime with N.
2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm.

For example, a = 6 and n = 15.
So now our factoring problem is:

a
r mod N = 1

a
r ⌘ 1 mod N

In fact, this algorithm for finding discrete log even more directly attacks other
crypto primitives such as Diffie-Hellman key exchange.

20/25

Order finding

Our discrete log problem is equivalent to order finding.
a

1 mod 15 a
2 mod 15 a

3 mod 15 a
4 mod 15

a=2 2 4 8 1
a=4 4 1 4 1
a=7 7 4 13 1
a=8 8 4 2 1

a=11 11 1 11 1
a=13 13 4 7 1
a=14 14 1 14 1

Find smallest r such that a
r ⌘ 1 mod N

21/25

Period finding

In other words, the problem by now can also be phrased as finding the period of a
function.

f (x) = f (x + r)

Where
f (x) = a

x = a
x+r mod N

Find r.

22/25

What to do after quantum algorithm gives you r

I If r is odd or if a
r

2 + 1 ⌘ 0 mod N, abandon.
I There is separate theorem saying no more than a quarter of trials would have

to be tossed.

Exercise: try for a = 14.

23/25

What to do after quantum algorithm gives you r

I If r is odd or if a
r

2 + 1 ⌘ 0 mod N, abandon.
I There is separate theorem saying no more than a quarter of trials would have

to be tossed.

Exercise: try for a = 14.

Otherwise, factors are GCD(a
r

2 ± 1, N)
a=2 r=4 22 ± 1 = 4 ± 1
a=4 r=2 41 ± 1 = 4 ± 1
a=7 r=4 72 ± 1 = 49 ± 1
a=8 r=4 82 ± 1 = 64 ± 1

a=11 r=2 111 ± 1 = 11 ± 1
a=13 r=4 132 ± 1 = 169 ± 1
a=14 r=2 142 ± 1 = 196 ± 1 (bad case)

Notice why we discarded 14.

24/25

Proof why this works and why factoring is modular square root

a
r ⌘ 1 mod N

So now a
r

2 is a nontrivial square root of 1 mod N.

a
r � 1 ⌘ 0 mod N

(a
r

2 � 1)(a
r

2 + 1) ⌘ 0 mod N

The above implies that
(a

r

2 � 1)(a
r

2 + 1)
N

is an integer. So now we have to prove that

1. a
r

2 �1
N

is not an integer, and

2. a
r

2 +1
N

is not an integer.

25/25

Proof why this works and why factoring is modular square root

Suppose a
r

2 �1
N

is an integer
that would imply

a
r

2 � 1 ⌘ 0 mod N

a
r

2 ⌘ 1 mod N

but we already defined r is the smallest such that a
r ⌘ 1 mod N, so there is a

contradiction, so a
r

2 �1
N

is not an integer.

Suppose a
r

2 +1
N

is an integer
that would imply

a
r

2 + 1 ⌘ 0 mod N

but we already eliminated such cases because we know this doesn’t give us a
useful result.

