4

Basic quantum algorithms: Deutsch-Jozsa,
Bernstein—VaziraniT Shor factoring classical part

)\
/ / Yipeng Huang

Rutgers University

NN\VAVIVIVIe gV

February 14, 2024

1/25

Promise algorithms vs. unstructured search

Quantum algorithms offer(exponential}peedup in “promise” problems

A progression of related algorithms:
/ 1. Deutsch’s

2. Deutsch-Jozsa /0~ @/

\ 3. Bernstein-Vazirani

J 4. Simon’s ¢

775. Shor’s j{%()(x) 7[(7(4@

2/25

Table of contents

Deutsch-Jozsa algorithm: extending Deutsch’s algorithm to more qubits
The state after applying oracle U
Lemma: the Hadamard transform
The state after the final set of Hadamards
Probability of measuring upper register to get 0

Bernstein-Vazirani algorithm: examining the Deutsch-Jozsa outputs in more detail
The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

3/25

Deutsch-Jozsa algorithm: Deutsch’s algorithm for the n > 1 case

The state after the first set of Hadamards
1. Initial state: [c) @ |t) = [0)*" @ [1) = |0...0) |1> =10...01)
2. After first set of Hadamards: |[+)*" @ |-) = T L S |C> ® |—)

4/25

Deutsch’s algorithm: Deutsch-Jozsa for the n = 1 case

The state after applying oracle U
1. Initial state: [c) @ |[t) = [0)*" @ [1) = |0...0) |1 > 0...01)
2. After first set of Hadamards: [-+)*" @ |-) = 51> 32 \c) ® |-)
3. After applying oracle U:

2" —1 -

U(1+ @|-)) = /2 Z\ (>ﬁwc)>>
2"—1
2n/2 Z >f<C)) ® (l >\;§|1>)

5/25

Lemma: the Hadamard transform (. m:(@ oot Cobtl+ - - {C)/L«M%/)

Ho () = 1, 22 (1)em) M 2
>
= (oMo ® Cill, @ --- @ Oy

H®" |c)
:H‘C0>®H|C1> ®...®H’Cn_1>

_ \%(\m + (—1)% m) ® %(\m +(=1)% |1>) ®...® %(\m + (=1 \1>)
1

2"—1
S D (L)t med 2y
m=0

> Try it out forn = 1: H®! [c) = 5 Zi;&(—l)om jm) =

L0y + L 1) =|+) if|e) =0)
L(—1)°10) + H(—1)7 1) = ¢ V2 2
-~ (=D70) + Z(=1)7[1) {\%|O>\%1>—|> if c) = |1)

6/25

Deutsch-Jozsa algorithm: Deutsch’s algorithm for the n > 1 case
The state after applying oracle U
1. Initial state: |c) ® |t) = [0)®" @ |1) = |0...0) |1> =0...01)
2. After first set of Hadamards: |[+)*" @ |-) = T /2 Zzn 1 |c) ® |—)
3. After applying oracle U: U(+)¥" ® |—>> e ST =190 @ (|O>\;§|1>>
4. After final set of Hadamards:

pi |
(H*" 1) (2% z_; (—1Y© |0 @ (\0>\gl>))
2"—1 om_1 |O> 3 ’1>
2”/2 Z (=1 C)(zn/z 2:: 1"]m}) ® (7)
2"—-12"-1

——CZ;WIZ% (=1 @Fem) ®(\0>\;§!1>)

Deutsch-Jozsa algorithm: Deutsch’s algorithm for the n > 1 case

Output of circuit is 0 iff f is constant
1. Initial state: [c) @ |t) = [0)*" @ [1) = |0...0) |1> =10...01)
2. After first set of Hadamards: [-+)*" @ |-) = 51> 32! \c} ® |—-)

3. After applying oracle U: U(+)%" ® \—}) zn/z Zzn H=1Y O o) ® (|O>f2|1>)

4. After final set of Hadamards: (H®” ® I) (2"/2 2 _1 -1y o) ® (V2))

n 2 —1 z 1)/‘(c)+c.m m) & (|0>\/§|1>)
5. Amphtude of upper register being |m) = |0):

8/25

Deutsch-Jozsa algorithm: Deutsch’s algorithm for the n > 1 case
Output of circuit is 0 iff f is constant
1. Initial state: |c) ® |t) = [0)*" @ |1) = |0...0) |1> =0...01)
2. After first set of Hadamards: |[+)*" @ |-) = > L S |C> ® |—)

3. After applying oracle U: U()" ® |—>> e S -1) @ (|0>\/§|1>>

4. After final set of Hadamards: (H®" @ I) (w7 2 _1 —1Y |c) (2))
2” 1 22” 1 1)f(c)—|—c-m ’m> ® (|0>\/§|1>)

5. Amplitude of upper register being |m) = |0): 3 2 =1y

6. Probability of measuring upper register to get m = O.

2"—1

1 c
on > (-1

2
B {‘(—1)f(c)]2 =1 iff is constant
c=0

0 if f is balanced

9/25

_—
-

Pogtsck Al

R ENEE:

ey o
c -

o 1

i

~ N~ S W

D“j /rf’ ¥

———

Table of contents

Deutsch-Jozsa algorithm: extending Deutsch’s algorithm to more qubits
The state after applying oracle U
Lemma: the Hadamard transform
The state after the final set of Hadamards
Probability of measuring upper register to get 0

Bernstein-Vazirani algorithm: examining the Deutsch-Jozsa outputs in more detail
The factoring problem

Shor’s algorithm classical part: converting factoring to period findifig
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

10/25

Table of contents

Deutsch-Jozsa algorithm: extending Deutsch’s algorithm to more qubits
The state after applying oracle U
Lemma: the Hadamard transform
The state after the final set of Hadamards
Probability of measuring upper register to get 0

Bernstein-Vazirani algorithm: examining the Deutsch-Jozsa outputs in more detail
The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

11/25

The factoring problem

One way functions for cryptography
1. Multiplying two b-bit numbers: on order of b* time.

3
2. Best known classical algorithm to factor a b-bit number: on order of about Vb
time.

» Makes multiplying large primes a candidate one-way function.

» [t's an open question of mathematics to prove whether one way functions
exist.

Public key cryptography
Numberphile YouTube channel explanation of RSA public key cryptography:
https://www.youtube.com/watch?v=M7kEpwltn50

12/25

https://www.youtube.com/watch?v=M7kEpw1tn50

The factoring problem

One way functions for cryptography
1. Multiplying two b-bit numbers: on order of b* time.
2. Best known classical algorithm to factor a b-bit number: on order of about o Vb
time.
Quantum integer factoring algorithm

» Quantum algorithm to factor a b-bit number: b°.
» Peter Shor, 1994.

» Important example of quantum algorithm offering exponential speedup.

13/25

Table of contents

Deutsch-Jozsa algorithm: extending Deutsch’s algorithm to more qubits
The state after applying oracle U
Lemma: the Hadamard transform
The state after the final set of Hadamards
Probability of measuring upper register to get 0

Bernstein-Vazirani algorithm: examining the Deutsch-Jozsa outputs in more detail
The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

14/25

The classical part: converting factoring to order finding / period
finding

General strategy for the classical part

1. Factoring

2. Modular square root
3. Discrete logarithm
4. Order finding

5. Period finding

The fact that a quantum algorithm can support all these primitives leads to
additional ways that future quantum computing can be useful / threatening to
existing cryptography:.

15/25

Factoring

N =pq
N=15=3x5

16/25

Modular square root

Finding the modular square root
s> mod N =1

s=+v1 modN

Trivial roots would be s = +1.
» Are there other (nontrivial) square roots?

» For N =15,s = £4, s = £11, s = £14 are all nontrivial square roots. (Show
this).

» Later in these slides, we will see how nontrivial square roots are useful for
factoring.

17/25

Discrete log

1. Pick a that is relatively prime with N.

2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm.
For example, a=6 and n=15.

Exercise: list the possible a’s for N = 15.

18/25

Discrete log

1. Pick a that is relatively prime with N.

2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm.
For example, a = 6 and n = 15.

So now our factoring problem is:
a mod N=1

ad =1 modN

In fact, this algorithm for finding discrete log even more directly attacks other
crypto primitives such as Diffie-Hellman key exchange.

19/25

Order finding

Our discrete log problem is equivalent to order finding.

al mod 15 | 42 mod 15 | 2> mod 15 | a* mod 15
a=2 | 2 4 8 1
a=4 | 4 1 4 1
a=7 | 7 4 13 1
a=8 | 8 4 2 1
a=11 | 11 1 11 1
a=13 | 13 4 7 1
a=14 | 14 1 14 1

Find smallest r such thata” =1 mod N

Period finding

In other words, the problem by now can also be phrased as finding the period of a
function.

fx) = flx+7)

Where
f(x) =a*=a""" mod N

Find 7.

21/25

What to do after quantum algorithm gives you r

» Ifrisoddorifaz +1 =0 mod N, abandon.

» There is separate theorem saying no more than a quarter of trials would have
to be tossed.

Exercise: try for a = 14.

22/25

What to do after quantum algorithm gives you r

» Ifrisodd orifaz +1=0 mod N, abandon.

» There is separate theorem saying no more than a quarter of trials would have
to be tossed.

Exercise: try for a = 14.

Otherwise, factors are GCD(az +1,N)
a=2 r=4|22+1=4+1

a=4 r=2 |414+1=44+1

a=7 r=4 | 72+1=49+1

a=8 r=4 | 8 +t1=64+1

a=11 r=2 | 11'+1=11+1

a=13 r=4 | 132+1 =169+ 1
r=2

a=14 142 +1=196+1 (bad case)
Notice why we discarded 14.

23/25

Proof why this works and why factoring is modular square root

ad =1 modN

So now a2 is a nontrivial square root of 1 mod N.
a —1=0 modN

(a2 —1)(a2+1)=0 mod N
The above implies that
(a2 —1)(az +1)
N
is an integer. So now we have to prove that

.
a2 —1
1. 22

is not an integer, and
;

2. “ZI\}L 1 isnot an integer.

24/25

Proof why this works and why factoring is modular square root

,
a2 —1
Suppose “=;

is an integer

that would imply
a2 —1=0 mod N

=1 modN

N[=

a

but we already defined r is the smallest such that 4" =1 mod N, so there is a

r
contradiction, so “ZN_ 1l isnotan integer.

a§+1
N
that would imply

Suppose is an integer

a§—|—150 mod N

but we already eliminated such cases because we know this doesn’t give us a
useful result.

25/25

