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Promise algorithms vs. unstructured search

Quantum algorithms offer exponential speedup in “promise” problems
A progression of related algorithms:

1. Deutsch’s
2. Deutsch-Jozsa
3. Bernstein-Vazirani
4. Simon’s
5. Shor’s
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Deutsch-Jozsa algorithm: Deutsch’s algorithm for the n > 1 case

The state after the first set of Hadamards
1. Initial state: |ci ⌦ |ti = |0i⌦n ⌦ |1i = |0 . . . 0i |1i = |0 . . . 01i
2. After first set of Hadamards: |+i⌦n ⌦ |�i = 1

2n/2

P2n�1
c=0 |ci ⌦ |�i
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Deutsch’s algorithm: Deutsch-Jozsa for the n = 1 case

The state after applying oracle U

1. Initial state: |ci ⌦ |ti = |0i⌦n ⌦ |1i = |0 . . . 0i |1i = |0 . . . 01i
2. After first set of Hadamards: |+i⌦n ⌦ |�i = 1

2n/2

P2n�1
c=0 |ci ⌦ |�i

3. After applying oracle U:

U

⇣
|+i⌦n ⌦ |�i

⌘
=

1
2n/2

2n�1X

c=0

|ci ⌦
✓
|f (c)i � | ¯f (c)ip

2

◆

=
1

2n/2

2n�1X

c=0

(�1)f (c) |ci ⌦
✓
|0i � |1ip

2

◆
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Lemma: the Hadamard transform
H

⌦n |ci = 1
2n/2

P2n�1
m=0 (�1)c·m |mi

I

H
⌦n |ci

= H |c0i ⌦ H |c1i ⌦ . . .⌦ H |cn�1i

=
1p
2

⇣
|0i+ (�1)c0 |1i

⌘
⌦ 1p

2

⇣
|0i+ (�1)c1 |1i

⌘
⌦ . . .⌦ 1p

2

⇣
|0i+ (�1)cn�1 |1i

⌘

=
1

2n/2

2n�1X

m=0

(�1)c0m0+c1m1+...+cn�1mn�1 mod 2 |mi

I Try it out for n = 1: H
⌦1 |ci = 1

21/2

P21�1
m=0 (�1)c·m |mi =

1p
2
(�1)0 |0i+ 1p

2
(�1)c |1i =

(
1p
2
|0i+ 1p

2
|1i = |+i if |ci = |0i

1p
2
|0i � 1p

2
|1i = |�i if |ci = |1i
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Deutsch-Jozsa algorithm: Deutsch’s algorithm for the n > 1 case
The state after applying oracle U

1. Initial state: |ci ⌦ |ti = |0i⌦n ⌦ |1i = |0 . . . 0i |1i = |0 . . . 01i
2. After first set of Hadamards: |+i⌦n ⌦ |�i = 1

2n/2

P2n�1
c=0 |ci ⌦ |�i

3. After applying oracle U: U

⇣
|+i⌦n ⌦ |�i

⌘
= 1

2n/2

P2n�1
c=0 (�1)f (c) |ci ⌦

⇣
|0i�|1ip

2

⌘

4. After final set of Hadamards:

�
H

⌦n ⌦ I
�✓ 1

2n/2

2n�1X

c=0

(�1)f (c) |ci ⌦
⇣ |0i � |1ip

2

⌘◆

=
1

2n/2

2n�1X

c=0

(�1)f (c)
⇣ 1

2n/2

2n�1X

m=0

(�1)c·m |mi
⌘
⌦
⇣ |0i � |1ip

2

⌘

=
1
2n

2n�1X

c=0

2n�1X

m=0

(�1)f (c)+c·m |mi ⌦
⇣ |0i � |1ip

2

⌘
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Deutsch-Jozsa algorithm: Deutsch’s algorithm for the n > 1 case

Output of circuit is 0 iff f is constant

1. Initial state: |ci ⌦ |ti = |0i⌦n ⌦ |1i = |0 . . . 0i |1i = |0 . . . 01i
2. After first set of Hadamards: |+i⌦n ⌦ |�i = 1

2n/2

P2n�1
c=0 |ci ⌦ |�i

3. After applying oracle U: U

⇣
|+i⌦n ⌦ |�i

⌘
= 1

2n/2

P2n�1
c=0 (�1)f (c) |ci ⌦

⇣
|0i�|1ip

2

⌘

4. After final set of Hadamards:
�
H

⌦n ⌦ I
�✓ 1

2n/2

P2n�1
c=0 (�1)f (c) |ci ⌦

⇣
|0i�|1ip

2

⌘◆
=

1
2n

P2n�1
c=0

P2n�1
m=0 (�1)f (c)+c·m |mi ⌦

⇣
|0i�|1ip

2

⌘

5. Amplitude of upper register being |mi = |0i:

1
2n

2n�1X

c=0

(�1)f (c)
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Deutsch-Jozsa algorithm: Deutsch’s algorithm for the n > 1 case
Output of circuit is 0 iff f is constant

1. Initial state: |ci ⌦ |ti = |0i⌦n ⌦ |1i = |0 . . . 0i |1i = |0 . . . 01i
2. After first set of Hadamards: |+i⌦n ⌦ |�i = 1

2n/2

P2n�1
c=0 |ci ⌦ |�i

3. After applying oracle U: U

⇣
|+i⌦n ⌦ |�i

⌘
= 1

2n/2

P2n�1
c=0 (�1)f (c) |ci ⌦

⇣
|0i�|1ip

2

⌘

4. After final set of Hadamards:
�
H

⌦n ⌦ I
�✓ 1

2n/2

P2n�1
c=0 (�1)f (c) |ci ⌦

⇣
|0i�|1ip

2

⌘◆
=

1
2n

P2n�1
c=0

P2n�1
m=0 (�1)f (c)+c·m |mi ⌦

⇣
|0i�|1ip

2

⌘

5. Amplitude of upper register being |mi = |0i: 1
2n

P2n�1
c=0 (�1)f (c)

6. Probability of measuring upper register to get m = 0:

�����
1
2n

2n�1X

c=0

(�1)f (c)

�����

2

=

(��(�1)f (c)
��2 = 1 if f is constant

0 if f is balanced
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The factoring problem

One way functions for cryptography

1. Multiplying two b-bit numbers: on order of b
2 time.

2. Best known classical algorithm to factor a b-bit number: on order of about 2
3p

b

time.

I Makes multiplying large primes a candidate one-way function.
I It’s an open question of mathematics to prove whether one way functions

exist.

Public key cryptography
Numberphile YouTube channel explanation of RSA public key cryptography:
https://www.youtube.com/watch?v=M7kEpw1tn50

https://www.youtube.com/watch?v=M7kEpw1tn50
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The factoring problem

One way functions for cryptography

1. Multiplying two b-bit numbers: on order of b
2 time.

2. Best known classical algorithm to factor a b-bit number: on order of about 2
3p

b

time.

Quantum integer factoring algorithm
I Quantum algorithm to factor a b-bit number: b

3.
I Peter Shor, 1994.
I Important example of quantum algorithm offering exponential speedup.
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The classical part: converting factoring to order finding / period
finding

General strategy for the classical part

1. Factoring
2. Modular square root
3. Discrete logarithm
4. Order finding
5. Period finding

The fact that a quantum algorithm can support all these primitives leads to
additional ways that future quantum computing can be useful / threatening to
existing cryptography.
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Factoring

N = pq

N = 15 = 3 ⇥ 5
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Modular square root

Finding the modular square root

s
2 mod N = 1

s =
p

1 mod N

Trivial roots would be s = ±1.
I Are there other (nontrivial) square roots?
I For N = 15, s = ±4, s = ±11, s = ±14 are all nontrivial square roots. (Show

this).
I Later in these slides, we will see how nontrivial square roots are useful for

factoring.
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Discrete log

1. Pick a that is relatively prime with N.
2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm.

For example, a=6 and n=15.

Exercise: list the possible a’s for N = 15.
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Discrete log

1. Pick a that is relatively prime with N.
2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm.

For example, a = 6 and n = 15.
So now our factoring problem is:

a
r mod N = 1

a
r ⌘ 1 mod N

In fact, this algorithm for finding discrete log even more directly attacks other
crypto primitives such as Diffie-Hellman key exchange.
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Order finding

Our discrete log problem is equivalent to order finding.
a

1 mod 15 a
2 mod 15 a

3 mod 15 a
4 mod 15

a=2 2 4 8 1
a=4 4 1 4 1
a=7 7 4 13 1
a=8 8 4 2 1

a=11 11 1 11 1
a=13 13 4 7 1
a=14 14 1 14 1

Find smallest r such that a
r ⌘ 1 mod N
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Period finding

In other words, the problem by now can also be phrased as finding the period of a
function.

f (x) = f (x + r)

Where
f (x) = a

x = a
x+r mod N

Find r.
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What to do after quantum algorithm gives you r

I If r is odd or if a
r

2 + 1 ⌘ 0 mod N, abandon.
I There is separate theorem saying no more than a quarter of trials would have

to be tossed.

Exercise: try for a = 14.
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What to do after quantum algorithm gives you r

I If r is odd or if a
r

2 + 1 ⌘ 0 mod N, abandon.
I There is separate theorem saying no more than a quarter of trials would have

to be tossed.

Exercise: try for a = 14.

Otherwise, factors are GCD( a
r

2 ± 1, N )
a=2 r=4 22 ± 1 = 4 ± 1
a=4 r=2 41 ± 1 = 4 ± 1
a=7 r=4 72 ± 1 = 49 ± 1
a=8 r=4 82 ± 1 = 64 ± 1

a=11 r=2 111 ± 1 = 11 ± 1
a=13 r=4 132 ± 1 = 169 ± 1
a=14 r=2 142 ± 1 = 196 ± 1 (bad case)

Notice why we discarded 14.
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Proof why this works and why factoring is modular square root

a
r ⌘ 1 mod N

So now a
r

2 is a nontrivial square root of 1 mod N.

a
r � 1 ⌘ 0 mod N

(a
r

2 � 1)(a
r

2 + 1) ⌘ 0 mod N

The above implies that
(a

r

2 � 1)(a
r

2 + 1)
N

is an integer. So now we have to prove that

1. a
r

2 �1
N

is not an integer, and

2. a
r

2 +1
N

is not an integer.
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Proof why this works and why factoring is modular square root

Suppose a
r

2 �1
N

is an integer
that would imply

a
r

2 � 1 ⌘ 0 mod N

a
r

2 ⌘ 1 mod N

but we already defined r is the smallest such that a
r ⌘ 1 mod N, so there is a

contradiction, so a
r

2 �1
N

is not an integer.

Suppose a
r

2 +1
N

is an integer
that would imply

a
r

2 + 1 ⌘ 0 mod N

but we already eliminated such cases because we know this doesn’t give us a
useful result.


