
1/36

C Programming: Debugging, Bits, Bytes, Integers

Yipeng Huang

Rutgers University

February 15, 2024

2/36

Table of contents
Strategies for correct software & debugging

Announcements
Canvas timed quiz 4 and programming assignment 2

Bits and bytes

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

3/36

Challenges in CS programming assignments, strategies to get
unstuck, resources

In CS 111, 112, 211, what are reasons programming assignments are
challenging?
I Not sure where to start.
I It isn’t working.
I The CS 211 teachers say that knowing Java helps programming in C, but C is

nothing like Java.

What are strategies to get unstuck?

4/36

Lessons and ways in which programming in class is not like the real
world.

I Coding deliberately is important. Have a plan. Understand the existing code.
Test assumptions. Don’t code by trial and error.

I Less code is better, and more likely to be correct.
I Reading code is as important and takes more time than writing code.

5/36

Figure: Software engineering for correctness

6/36

Strategies for debugging

Reduce to minimum example
I Check your assumptions.
I Use minimum example as basis for searching for help.

Debugging techniques
I Use assertions.
I Use debugging tools: Valgrind, Address Sanitizer, GDB.
I Use debugging printf statements.

7/36

Table of contents
Strategies for correct software & debugging

Announcements
Canvas timed quiz 4 and programming assignment 2

Bits and bytes

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

8/36

Canvas timed quiz 4 and programming assignment 2

Programming assignment 2

1. Due Friday 2/23.
2. Graph algorithms and hash table.

9/36

Table of contents
Strategies for correct software & debugging

Announcements
Canvas timed quiz 4 and programming assignment 2

Bits and bytes

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

10/36

inplaceSwap.c: Swapping variables without temp variables.

How does it work?

11/36

Don’t confuse bitwise operators with logical operators

Bitwise operators
I ˜
I &
I |
I ˆ

Logical operators
I !
I &&
I ||
I != (for bool type)

12/36

Table of contents
Strategies for correct software & debugging

Announcements
Canvas timed quiz 4 and programming assignment 2

Bits and bytes

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

13/36

Representing negative and signed integers

Ways to represent negative numbers

1. Sign magnitude
2. 1s’ complement
3. 2’s complement

fft
ffs.fr

14/36

Representing negative and signed integers

Sign magnitude
Flip leading bit.

I byte

mostnegnumber mostposnumber

1 199 1119 0 299 9911

127 127
negone

Zero posone

10000001 00000000 0.0000001

1 1 0000000 41

company
0 000 0000 L _000 0000

negation
127

0 111 1111 falli l it

1 1 0

1 000 0001 0 000 0001 9 88 88 8

15/36

Representing negative and signed integers

1s’ complement
I Flip all bits
I Addition in 1s’ complement is sound
I In this encoding there are 2 encodings for 0
I -0: 0b1111
I +0: 0b0000

1s complement

1 byte

mostnegnumber mostpesumber

1000 0000 Zero 0111 1117

0000 0000 127
127 1111 1111

negone posone
1111 1110 0000 0001

I 1

compare
0000 0000 111 1111

negating
1 127 0111 1111 1000 0000

4127 127
addition
1 1

1111 1110 0000 000 111 1111

1 0

2 1 1
60 6610

msn.mn

16/36

Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

I what is the most positive value you can represent? 127
I what is the most negative value you can represent? -128
I how to represent -1? 11111111
I how to represent -2? 11111110

2 s complement

flip all bits and add one

1 byte 000 0001
most mg number

127 mostposaum

0111 1111
1000 0000 Zero
128 0000 0000 127

O

neg one po one

1111 1111 0000 0001

4 1

17/36

Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

I MSB: 1 for negative
I To make a number negative: flip all bits and add 1.
I Addition in 2’s complement is sound

18/36

Importance of paying attention to limits of encoding

0 2 4 6 8 10
12 14

0
2

4
6

8
10

12
14

0
4
8

12
16
20
24
28
32

Integer addition

Figure: Image credit: CS:APP

0 2 4 6 8 10 12 14
0

2
4

6
8

10
12

14

0
2
4
6
8

10
12
14
16

Unsigned addition (4-bit word)

Normal

Overflow

Figure: Image credit: CS:APP

19/36

Importance of paying attention to limits of encoding

0 2 4 6 8 10
12 14

0
2

4
6

8
10

12
14

0
4
8

12
16
20
24
28
32

Integer addition

Figure: Image credit: CS:APP

-8 -6 -4 -2 0 2 4 6
-8

-6
-4

-2
0

2
4

6

-8
-6
-4
-2
0
2
4
6
8

Two's complement addition (4-bit word)

Normal

Positive
overflow

Negative
overflow

Figure: Image credit: CS:APP

https://www.theatlantic.com/technology/archive/2014/12/

how-gangnam-style-broke-youtube/383389/

https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/
https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/

20/36

Table of contents
Strategies for correct software & debugging

Announcements
Canvas timed quiz 4 and programming assignment 2

Bits and bytes

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

21/36

Unsigned fixed-point binary for fractions

�
�
	
bm	
 bm–1	
 b2	
 b1	
 b0	
 b–1	
 b–2	
 b–3	
 b–n+1	

�
�
	
 .	

1	

2	

4	

2m–1	

2m	

�
�
	

�
�
	

1/2	

1/4	

1/8	

1/2n–1	

b–n	

1/2n	

Figure: Fractional binary. Image credit CS:APP

22/36

Unsigned fixed-point binary for fractions

unsigned fixed-point char example weight in decimal
1000.0000 8
0100.0000 4
0010.0000 2
0001.0000 1
0000.1000 0.5
0000.0100 0.25
0000.0010 0.125
0000.0001 0.0625

Table: Weight of each bit in an example fixed-point binary number

I .625 = .5 + .125 = 0000.10102

I 1001.10002 = 9 + .5 = 9.5

23/36

Signed fixed-point binary for fractions

signed fixed-point char example weight in decimal
1000.0000 -8
0100.0000 4
0010.0000 2
0001.0000 1
0000.1000 0.5
0000.0100 0.25
0000.0010 0.125
0000.0001 0.0625

Table: Weight of each bit in an example fixed-point binary number

I �.625 = �8 + 4 + 2 + 1 + 0 + .25 + .125 = 1111.01102

I 1001.10002 = �8 + 1 + .5 = �6.5

24/36

Limitations of fixed-point

I Can only represent numbers of the form x/2k

I Cannot represent numbers with very large magnitude (great range) or very
small magnitude (great precision)

25/36

Bit shifting

<< N Left shift by N bits
I multiplies by 2N

I 2 << 3 = 0000_00102 << 3 = 0001_00002 = 16 = 2 ⇤ 23

I �2 << 3 = 1111_11102 << 3 = 1111_00002 = �16 = �2 ⇤ 23

>> N Right shift by N bits
I divides by 2N

I 16 >> 3 = 0001_00002 >> 3 = 0000_00102 = 2 = 16/23

I �16 >> 3 = 1111_00002 >> 3 = 1111_11102 = �2 = �16/23

26/36

Table of contents
Strategies for correct software & debugging

Announcements
Canvas timed quiz 4 and programming assignment 2

Bits and bytes

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

27/36

Programming assignment 2: Graphs, trees, queues, hashes

Programming Assignment 2 parts

1. edgelist: loading and printing a graph
2. isTree: needs either DFS (stack) or BFS (queue)
3. mst: a greedy algorithm
4. solveMaze: needs either DFS (stack) or BFS (queue)
5. findCycle: needs either DFS (stack) or BFS (queue)
6. hashTable: a separate chaining hash table

28/36

Using graphutils.h

I The adjacency list representation
I The edgelist representation
I The query

29/36

Binary search tree

Figure: BST with input sequence 7, 4, 7, 0, 6, 5, 2, 3. Duplicates ignored.

30/36

Binary search tree level order traversal

Figure: Level order, left-to-right traversal would return 7, 4, 0, 6, 2, 5, 3.

31/36

Binary search tree traversal orders

Breadth-first
I For example: level-order.
I Needs a queue (first in first out).
I Today in class we will build a BST and a Queue.

Depth-first
I For example: in-order traversal, reverse-order traversal.
I Needs a stack (first in last out).

32/36

typedef

Why types are important
I Natural language has nouns, verbs, adjectives, adverbs.
I Type safety.
I Interpretation vs. compilation.

33/36

BSTNode

typedef struct BSTNode BSTNode;

struct BSTNode {

int key;

BSTNode* l_child; // nodes with smaller key will be in left subtree

BSTNode* r_child; // nodes with larger key will be in right subtree

};

34/36

QueueNode, Queue

// queue needed for level order traversal

typedef struct QueueNode QueueNode;

struct QueueNode {

BSTNode* data;

QueueNode* next; // pointer to next node in linked list

};

typedef struct Queue {

QueueNode* front; // front (head) of the queue

QueueNode* back; // back (tail) of the queue

} Queue;

35/36

Let’s implement enqueue()

https://visualgo.net/en/queue

I First, consider if queue is empty.
I Then, consider if queue is not empty. Only need to touch back (tail) of the

queue.

https://visualgo.net/en/queue

36/36

Let’s implement dequeue()

https://visualgo.net/en/queue

I First, consider if queue will become empty.
I Then, consider if queue will not not empty. Only need to touch front (head) of

the queue.
Subtle point: why are the function signatures (return, parameters) of enqueue()
and dequeue() the way they are?

https://visualgo.net/en/queue

