C Programming: Debugging, Bits, Bytes, Integers

Yipeng Huang
Rutgers University

February 15, 2024

1/36

Table of contents

Strategies for correct software & debugging

Announcements
Canvas timed quiz 4 and programming assignment 2

Bits and bytes

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),
dequeue ()

2/36

Challenges in CS programming assignments, strategies to get
unstuck, resources

In CS 111, 112, 211, what are reasons programming assignments are
challenging?

» Not sure where to start.

» Itisn’t working.

» The CS 211 teachers say that knowing Java helps programming in C, but C is
nothing like Java.

What are strategies to get unstuck?

3/36

Lessons and ways in which programming in class is not like the real
world.

» Coding deliberately is important. Have a plan. Understand the existing code.
Test assumptions. Don’t code by trial and error.

» Less code is better, and more likely to be correct.

» Reading code is as important and takes more time than writing code.

4/36

* Social
— Code reviews
— Extreme/Pair programming

* Methodological
— Design patterns
— Test-driven development
— Version control
— Bug tracking

This isn’t an either/or tradeoff... a
spectrum of methods is needed!

Even the most “formal” argument
can still have holes:
+ Did you prove the right thing?
o Technological + Do your assumptions match reality?
— “lint” tools, static analysis
— Fuzzers, random testing

+ Knuth: “Beware of bugs in the above
code; | have only proved it correct, not
tried it.”

* Mathematical
— Sound type systems
— Formal verification

12 /15

From: https://www.seas.upenn.edu/~cis500/current/lectures/lec01.pdf

oA 5736

Strategies for debugging

Reduce to minimum example

» Check your assumptions.

» Use minimum example as basis for searching for help.

Debugging techniques

» Use assertions.
» Use debugging tools: Valgrind, Address Sanitizer, GDB.
» Use debugging printf statements.

6/36

Table of contents

Strategies for correct software & debugging

Announcements
Canvas timed quiz 4 and programming assignment 2

Bits and bytes

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),
dequeue ()

7/36

Canvas timed quiz 4 and programming assignment 2

Programming assignment 2

1. Due Friday 2/23.
2. Graph algorithms and hash table.

8/36

Table of contents

Strategies for correct software & debugging

Announcements
Canvas timed quiz 4 and programming assignment 2

Bits and bytes

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),
dequeue ()

9/36

inplaceSwap.c: Swapping variables without temp variables.

How does it work?

10/36

Don’t confuse bitwise operators with logical operators

Bitwise operators
.
> &
> |
>

Logical operators
> |

> &&
> ||

» = (for bool type)

11/36

Table of contents

Strategies for correct software & debugging

Announcements
Canvas timed quiz 4 and programming assignment 2

Bits and bytes

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),
dequeue ()

12/36

Representing negative and signed integers

Ways to represent negative numbers [S, o
F‘/l.rSign magnitude TT%&V ”ﬂ%—w
2. 1s’ complement QA UTTMne Q@W SVth (ABV&

3. 2’s complement

13/36

Representing negative and signed integers

1 byfe

eS¢ W’j Nupe MRSt POS vy
1_141 111 0. 1417411
Sign magnitude -
an; leadiig bit. ~ (27 -9(27

ULl S ‘%ﬁo mOk&

[ow.090 | 0.000-0000 0.000.0 10|
\" 1_000- 0dQ9 +‘
Q

14/36

Compy

0-002.0099 =% (_002.0000
g htion

—(=(z7)

oty —= PPN
s[—& l:O

(_ooo_oo2(-+ 0_000.000| - 0_0Q9—0CO9
"> (;oD0,0UOO

Representing negative and signed integers

1s” complement

Flip all bits

Addition in 1s” complement is sound

In this encoding there are 2 encodings for 0
-0: Ob1111

+0: 0b0000

vvyyyvyy

15/36

1< CUWGJLWWA/’?:’

1 bjft
osst mz\,jﬂwv\/)véf e pedu
[000_ 0000 €M Q=[]
B 0000_9000 +12
fZ'l (vt |
47
mﬁm pos o
((((_T1NO 0000 _ 000\
| +|
Cﬁwf&vwb
0ggo_povd == (|- UL
Vb%jom
—(+121) Ol L= 1009 -0000
%(27 -(21
Dl i Ceo
=<l
(1 - (110 + DO00-0® (= (11111l

= € O

Representing negative and signed integers

2’s complement

signed char weight in decimal

00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

» what is the most positive value you can represent? 127

» what is the most negative value you can represent? -128

» how to represent -1? 11111111

» how to represent -2? 11111110 16/36

235 Cﬂﬁr&%u@v{
jﬁéxrg) Ib% O‘fva QJJ G

bj-éi/ DoO_00 D (

st n“ﬁ Nunber™ - 127 uua@k&%uwu
[o0Oo_002> Zek0 Orri_tegy
-[zg ()000_00VOD +WZ7
O
(/uj one_ Po) QUL
0000_000)|

ol
—(4

Representing negative and signed integers

2’s complement

signed char weight in decimal

00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

» MSB: 1 for negative
» To make a number negative: flip all bits and add 1.

» Addition in 2’s complement is sound

17/36

Importance of paying attention to limits of encoding

Integer addition Unsigned addition (4-bit word)

Figure: Image credit: CS:APP Figure: Image credit: CS:APP

18/36

Importance of paying attention to limits of encoding

Integer addition

Two's complement addition (4-bit word)

Normal
Negative

overflow

Positive
overflow

Figure: Image credit: CS:APP Figure: Image credit: CS:APP

https://www.theatlantic.com/technology/archive/2014/12/
how—gangnam-style-broke-youtube/383389/

19/36

https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/
https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/

Table of contents

Strategies for correct software & debugging

Announcements
Canvas timed quiz 4 and programming assignment 2

Bits and bytes

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),
dequeue ()

20/36

Unsigned fixed-point binary for fractions

2m
2m—1

4

=

b, b,, *** by by by.by b, by *** b, b,
I

(\®)

1/2
1/4
1/8

1/2m1
1727

Figure: Fractional binary. Image credit CS:APP

21/36

Unsigned fixed-point binary for fractions

unsigned fixed-point char example

weight in decimal

1000.0000
0100.0000
0010.0000
0001.0000
0000.1000
0000.0100
0000.0010
0000.0001

8

4

2

1

0.5
0.25
0.125
0.0625

Table: Weight of each bit in an example fixed-point binary number

» 625 = .5+ .125 = 0000.1010,
> 1001.1000p =9+ .5=9.5

22/36

Signed fixed-point binary for fractions

signed fixed-point char example

weight in decimal

1000.0000
0100.0000
0010.0000
0001.0000
0000.1000
0000.0100
0000.0010
0000.0001

-8

4

2

1

0.5
0.25
0.125
0.0625

Table: Weight of each bit in an example fixed-point binary number

» —625=-8+4+2+1+4+0+ .25+ .125=1111.0110,

» 1001.1000p = -8 4+1+ .5 = —6.5

23/36

Limitations of fixed-point

» Can only represent numbers of the form x/2*

» Cannot represent numbers with very large magnitude (great range) or very
small magnitude (great precision)

24/36

Bit shifting

<< N Left shift by N bits

» multiplies by 2V
> 2 << 3=0000_0010, << 3 =0001_0000, =16 = 2 % 23
> 2 << 3=1111_1110, << 3=1111_0000, = —16 = —2 % 23

>> N Right shift by N bits
» divides by 2N
> 16 >> 3 =0001_0000, >> 3 = 0000_0010, =2 = 16/23
> —16 >>3=1111_0000; >>3=1111_1110, = -2 = —16/23

25/36

Table of contents

Strategies for correct software & debugging

Announcements
Canvas timed quiz 4 and programming assignment 2

Bits and bytes

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),
dequeue ()

26/36

Programming assignment 2: Graphs, trees, queues, hashes

Programming Assignment 2 parts

1.

AN

edgelist: loading and printing a graph

isTree: needs either DFS (stack) or BFS (queue)

mst: a greedy algorithm

solveMaze: needs either DFS (stack) or BFS (queue)

findCycle: needs either DFS (stack) or BFS (queue)
hashTable: a separate chaining hash table

27136

Using graphutils.h

» The adjacency list representation
» The edgelist representation

» The query

28/36

Binary search tree

Figure: BST with input sequence 7, 4, 7, 0, 6, 5, 2, 3. Duplicates ignored.

29/36

Binary search tree level order traversal
Figure: Level order, left-to-right traversal would return 7, 4, 0, 6, 2, 5, 3.

30/36

Binary search tree traversal orders

Breadth-first

» For example: level-order.
» Needs a queue (first in first out).

» Today in class we will build a BST and a Queue.

Depth-first
» For example: in-order traversal, reverse-order traversal.
» Needs a stack (first in last out).

31/36

typedef

Why types are important

» Natural language has nouns, verbs, adjectives, adverbs.
> Type safety.

» Interpretation vs. compilation.

32/36

BSTNode

typedef struct BSTNode BSTNode;
struct BSTNode {
int key;
BSTNode* 1_child; // nodes with smaller key will be in left s
BSTNode* r_child; // nodes with larger key will be in right s
I

33/36

QueueNode, Queue

// queue needed for level order traversal
typedef struct QueueNode QueueNode;
struct QueueNode {
BSTNodex data;
QueueNode* next; // pointer to next node in linked list
I
typedef struct Queue
QueueNodex front; // front (head) of the queue
QueueNode* back; // back (tail) of the queue
} Queue;

34/36

Let’s implement enqueue ()

https://visualgo.net/en/queue
» First, consider if queue is empty.

» Then, consider if queue is not empty. Only need to touch back (tail) of the
queue.

35/36

https://visualgo.net/en/queue

Let’s implement dequeue ()

https://visualgo.net/en/queue
» First, consider if queue will become empty.

» Then, consider if queue will not not empty. Only need to touch front (head) of
the queue.

Subtle point: why are the function signatures (return, parameters) of enqueue ()
and dequeue () the way they are?

36/36

https://visualgo.net/en/queue

