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Challenges in CS programming assignments, strategies to get
unstuck, resources

In CS 111, 112, 211, what are reasons programming assignments are
challenging?
I Not sure where to start.
I It isn’t working.
I The CS 211 teachers say that knowing Java helps programming in C, but C is

nothing like Java.

What are strategies to get unstuck?
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Lessons and ways in which programming in class is not like the real
world.

I Coding deliberately is important. Have a plan. Understand the existing code.
Test assumptions. Don’t code by trial and error.

I Less code is better, and more likely to be correct.
I Reading code is as important and takes more time than writing code.
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Figure: Software engineering for correctness
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Strategies for debugging

Reduce to minimum example
I Check your assumptions.
I Use minimum example as basis for searching for help.

Debugging techniques
I Use assertions.
I Use debugging tools: Valgrind, Address Sanitizer, GDB.
I Use debugging printf statements.
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Canvas timed quiz 4 and programming assignment 2

Programming assignment 2

1. Due Friday 2/23.
2. Graph algorithms and hash table.
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inplaceSwap.c: Swapping variables without temp variables.

How does it work?
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Don’t confuse bitwise operators with logical operators

Bitwise operators
I ˜
I &
I |
I ˆ

Logical operators
I !
I &&
I ||
I != (for bool type)
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Representing negative and signed integers

Ways to represent negative numbers

1. Sign magnitude
2. 1s’ complement
3. 2’s complement

fft
ffs.fr
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Representing negative and signed integers

Sign magnitude
Flip leading bit.

I byte

mostnegnumber mostposnumber

1 199 1119 0 299 9911

127 127
negone

Zero posone

10000001 00000000 0.0000001

1 1 0000000 41



company
0 000 0000 L _000 0000

negation
127

0 111 1111 falli l it

1 1 0

1 000 0001 0 000 0001 9 88 88 8
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Representing negative and signed integers

1s’ complement
I Flip all bits
I Addition in 1s’ complement is sound
I In this encoding there are 2 encodings for 0
I -0: 0b1111
I +0: 0b0000



1s complement

1 byte

mostnegnumber mostpesumber

1000 0000 Zero 0111 1117

0000 0000 127
127 1111 1111

negone posone
1111 1110 0000 0001

I 1

compare
0000 0000 111 1111

negating
1 127 0111 1111 1000 0000

4127 127
addition
1 1

1111 1110 0000 000 111 1111

1 0



2 1 1
60 6610

msn.mn
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Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

I what is the most positive value you can represent? 127
I what is the most negative value you can represent? -128
I how to represent -1? 11111111
I how to represent -2? 11111110



2 s complement

flip all bits and add one

1 byte 000 0001
most mg number

127 mostposaum

0111 1111
1000 0000 Zero
128 0000 0000 127

O

neg one po one

1111 1111 0000 0001

4 1



17/36

Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

I MSB: 1 for negative
I To make a number negative: flip all bits and add 1.
I Addition in 2’s complement is sound
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Importance of paying attention to limits of encoding
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Importance of paying attention to limits of encoding
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https://www.theatlantic.com/technology/archive/2014/12/

how-gangnam-style-broke-youtube/383389/

https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/
https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/
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Unsigned fixed-point binary for fractions
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Figure: Fractional binary. Image credit CS:APP
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Unsigned fixed-point binary for fractions

unsigned fixed-point char example weight in decimal
1000.0000 8
0100.0000 4
0010.0000 2
0001.0000 1
0000.1000 0.5
0000.0100 0.25
0000.0010 0.125
0000.0001 0.0625

Table: Weight of each bit in an example fixed-point binary number

I .625 = .5 + .125 = 0000.10102

I 1001.10002 = 9 + .5 = 9.5
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Signed fixed-point binary for fractions

signed fixed-point char example weight in decimal
1000.0000 -8
0100.0000 4
0010.0000 2
0001.0000 1
0000.1000 0.5
0000.0100 0.25
0000.0010 0.125
0000.0001 0.0625

Table: Weight of each bit in an example fixed-point binary number

I �.625 = �8 + 4 + 2 + 1 + 0 + .25 + .125 = 1111.01102

I 1001.10002 = �8 + 1 + .5 = �6.5
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Limitations of fixed-point

I Can only represent numbers of the form x/2k

I Cannot represent numbers with very large magnitude (great range) or very
small magnitude (great precision)
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Bit shifting

<< N Left shift by N bits
I multiplies by 2N

I 2 << 3 = 0000_00102 << 3 = 0001_00002 = 16 = 2 ⇤ 23

I �2 << 3 = 1111_11102 << 3 = 1111_00002 = �16 = �2 ⇤ 23

>> N Right shift by N bits
I divides by 2N

I 16 >> 3 = 0001_00002 >> 3 = 0000_00102 = 2 = 16/23

I �16 >> 3 = 1111_00002 >> 3 = 1111_11102 = �2 = �16/23
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Programming assignment 2: Graphs, trees, queues, hashes

Programming Assignment 2 parts

1. edgelist: loading and printing a graph
2. isTree: needs either DFS (stack) or BFS (queue)
3. mst: a greedy algorithm
4. solveMaze: needs either DFS (stack) or BFS (queue)
5. findCycle: needs either DFS (stack) or BFS (queue)
6. hashTable: a separate chaining hash table
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Using graphutils.h

I The adjacency list representation
I The edgelist representation
I The query
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Binary search tree

Figure: BST with input sequence 7, 4, 7, 0, 6, 5, 2, 3. Duplicates ignored.
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Binary search tree level order traversal

Figure: Level order, left-to-right traversal would return 7, 4, 0, 6, 2, 5, 3.
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Binary search tree traversal orders

Breadth-first
I For example: level-order.
I Needs a queue (first in first out).
I Today in class we will build a BST and a Queue.

Depth-first
I For example: in-order traversal, reverse-order traversal.
I Needs a stack (first in last out).
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typedef

Why types are important
I Natural language has nouns, verbs, adjectives, adverbs.
I Type safety.
I Interpretation vs. compilation.
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BSTNode

typedef struct BSTNode BSTNode;

struct BSTNode {

int key;

BSTNode* l_child; // nodes with smaller key will be in left subtree

BSTNode* r_child; // nodes with larger key will be in right subtree

};



34/36

QueueNode, Queue

// queue needed for level order traversal

typedef struct QueueNode QueueNode;

struct QueueNode {

BSTNode* data;

QueueNode* next; // pointer to next node in linked list

};

typedef struct Queue {

QueueNode* front; // front (head) of the queue

QueueNode* back; // back (tail) of the queue

} Queue;
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Let’s implement enqueue()

https://visualgo.net/en/queue

I First, consider if queue is empty.
I Then, consider if queue is not empty. Only need to touch back (tail) of the

queue.

https://visualgo.net/en/queue
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Let’s implement dequeue()

https://visualgo.net/en/queue

I First, consider if queue will become empty.
I Then, consider if queue will not not empty. Only need to touch front (head) of

the queue.
Subtle point: why are the function signatures (return, parameters) of enqueue()
and dequeue() the way they are?

https://visualgo.net/en/queue

