Representing and Manipulating Information:
Two’s complement signed integers, fixed point

Yipeng Huang
Rutgers University

February 20, 2024

1/26

Table of contents

Announcements
Canvas timed quiz 4 and programming assignment 2

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),
dequeue ()

2/26

Canvas timed quiz 4 and programming assignment 2

Programming assignment 2

1. Due Friday 2/23.
2. Graph algorithms and hash table.

3/26

Table of contents

Announcements
Canvas timed quiz 4 and programming assignment 2

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),
dequeue ()

4/26

Representing negative and signed integers

Ways to represent negative numbers 7%@ S Cm%
4/ Sign magnitude itwpan ﬂﬂp Us }I@ Sil wﬂ) J @ %ﬁ/%
— 2. 1s’ complement et ngﬂk'%fw (/JMF M;OW/'C/ w(‘j M 0
3. 2’s complement 2 J

A 526

Representing negative and signed integers

2’s complement

signed char weight in decimal

00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

» what is the most positive value you can represent? 127

» what is the most negative value you can represent? -128

» how to represent -1? 11111111

» how to represent -2? 11111110 6/26

m@ﬂ/{wﬂ e, ~ j@@&‘(Fbi
(000 -0000 [9dD o
N OQ h@Ob\ OOOObOODO O\\(=S[[(
_zf (27 o]
ywj_ow Poj OV
(ot 09Jv- 00Ul
LQ+ 'z -
| 00D 00Q©
-+ O L (y= OO0

AR AR

Representing negative and signed integers

2’s complement

signed char weight in decimal

00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

» MSB: 1 for negative
» To make a number negative: flip all bits and add 1.

» Addition in 2’s complement is sound

7/26

Importance of paying attention to limits of encoding

Integer addition Unsigned addition (4-bit word)

Figure: Image credit: CS:APP Figure: Image credit: CS:APP

8/26

Importance of paying attention to limits of encoding

Integer addition

Two's complement addition (4-bit word)

Normal
Negative

overflow

Positive
overflow

Figure: Image credit: CS:APP Figure: Image credit: CS:APP

https://www.theatlantic.com/technology/archive/2014/12/
how—gangnam-style-broke-youtube/383389/

9/26

https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/
https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/

Table of contents

Announcements
Canvas timed quiz 4 and programming assignment 2

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),
dequeue ()

10/26

Unsigned fixed-point binary for fractions

2m
2m—1

4

=

b, b,, *** by by by.by b, by *** b, b,
I

(\®)

1/2
1/4
1/8

1/2m1
1727

Figure: Fractional binary. Image credit CS:APP

11/26

Unsigned fixed-point binary for fractions

unsigned fixed-point char example

weight in decimal

1000.0000
0100.0000
0010.0000
0001.0000
0000.1000
0000.0100
0000.0010
0000.0001

8

4

2

1

0.5
0.25
0.125
0.0625

Table: Weight of each bit in an example fixed-point binary number

» 625 = .5+ .125 = 0000.1010,
> 1001.1000p =9+ .5=9.5

12/26

Signed fixed-point binary for fractions

signed fixed-point char example

weight in decimal

1000.0000
0100.0000
0010.0000
0001.0000
0000.1000
0000.0100
0000.0010
0000.0001

-8

4

2

1

0.5
0.25
0.125
0.0625

Table: Weight of each bit in an example fixed-point binary number

» —625=-8+4+2+1+4+0+ .25+ .125=1111.0110,

» 1001.1000p = -8 4+1+ .5 = —6.5

13/26

Limitations of fixed-point

» Can only represent numbers of the form x/2*

» Cannot represent numbers with very large magnitude (great range) or very
small magnitude (great precision)

14/26

Bit shifting

<< N Left shift by N bits

» multiplies by 2V
> 2 << 3=0000_0010, << 3 =0001_0000, =16 = 2 % 23
> 2 << 3=1111_1110, << 3=1111_0000, = —16 = —2 % 23

>> N Right shift by N bits
» divides by 2N
> 16 >> 3 =0001_0000, >> 3 = 0000_0010, =2 = 16/23
> —16 >>3=1111_0000; >>3=1111_1110, = -2 = —16/23

15/26

Table of contents

Announcements
Canvas timed quiz 4 and programming assignment 2

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),
dequeue ()

16/26

Programming assignment 2: Graphs, trees, queues, hashes

Programming Assignment 2 parts

1.

AN

edgelist: loading and printing a graph

isTree: needs either DFS (stack) or BFS (queue)

mst: a greedy algorithm

solveMaze: needs either DFS (stack) or BFS (queue)

findCycle: needs either DFS (stack) or BFS (queue)
hashTable: a separate chaining hash table

17/26

Using graphutils.h

» The adjacency list representation
» The edgelist representation

» The query

18/26

Binary search tree

Figure: BST with input sequence 7, 4, 7, 0, 6, 5, 2, 3. Duplicates ignored.

19/26

Binary search tree level order traversal
Figure: Level order, left-to-right traversal would return 7, 4, 0, 6, 2, 5, 3.

20/26

Binary search tree traversal orders

Breadth-first

» For example: level-order.
» Needs a queue (first in first out).

» Today in class we will build a BST and a Queue.

Depth-first
» For example: in-order traversal, reverse-order traversal.
» Needs a stack (first in last out).

21/26

typedef

Why types are important

» Natural language has nouns, verbs, adjectives, adverbs.
> Type safety.

» Interpretation vs. compilation.

22/26

BSTNode

typedef struct BSTNode BSTNode;
struct BSTNode {
int key;
BSTNode* 1_child; // nodes with smaller key will be in left s
BSTNode* r_child; // nodes with larger key will be in right s
I

23/26

QueueNode, Queue

// queue needed for level order traversal
typedef struct QueueNode QueueNode;
struct QueueNode {
BSTNodex data;
QueueNode* next; // pointer to next node in linked list
I
typedef struct Queue
QueueNodex front; // front (head) of the queue
QueueNode* back; // back (tail) of the queue
} Queue;

24/26

Let’s implement enqueue ()

https://visualgo.net/en/queue
» First, consider if queue is empty.

» Then, consider if queue is not empty. Only need to touch back (tail) of the
queue.

25/26

https://visualgo.net/en/queue

Let’s implement dequeue ()

https://visualgo.net/en/queue
» First, consider if queue will become empty.

» Then, consider if queue will not not empty. Only need to touch front (head) of
the queue.

Subtle point: why are the function signatures (return, parameters) of enqueue ()
and dequeue () the way they are?

26/26

https://visualgo.net/en/queue

