
1/22

Quantum algorithms: Shor’s integer factoring quantum
part

Yipeng Huang

Rutgers University

February 21, 2024

n c P
HETH

ii
fft.no

i

flio Holes 1 s

I
const

g
balanced

10 1 18

100 101s icos 1115

5524552 552

2/22

Table of contents

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

Shor’s algorithm quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation
Measurement of target (bottom, ancillary) qubit register

Simon’s algorithm: setting up for quantum Fourier transform

Private key crypto

AES 256

key distribution

BBQ Quantum key exchange

Public key Crypto
Publickey

Privatekey
fix f x
pxq
integerfactorgan

RSA206 discreteday
L ellipercurves

4048

PostQuantum Crypto
lattices
Mabuse
ele

3/22

The factoring problem

One way functions for cryptography

1. Multiplying two b-bit numbers: on order of b2 time.

2. Best known classical algorithm to factor a b-bit number: on order of about 2
3pb

time.

I Makes multiplying large primes a candidate one-way function.
I It’s an open question of mathematics to prove whether one way functions

exist.

Public key cryptography
Numberphile YouTube channel explanation of RSA public key cryptography:
https://www.youtube.com/watch?v=M7kEpw1tn50

https://www.youtube.com/watch?v=M7kEpw1tn50

4/22

The factoring problem

One way functions for cryptography

1. Multiplying two b-bit numbers: on order of b2 time.

2. Best known classical algorithm to factor a b-bit number: on order of about 2
3pb

time.

Quantum integer factoring algorithm
I Quantum algorithm to factor a b-bit number: b3.
I Peter Shor, 1994.
I Important example of quantum algorithm offering exponential speedup.

5/22

Table of contents

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

Shor’s algorithm quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation
Measurement of target (bottom, ancillary) qubit register

Simon’s algorithm: setting up for quantum Fourier transform

fexj fex.ir r

6/22

The classical part: converting factoring to order finding / period
finding

General strategy for the classical part

1. Factoring
2. Modular square root
3. Discrete logarithm
4. Order finding
5. Period finding

The fact that a quantum algorithm can support all these primitives leads to
additional ways that future quantum computing can be useful / threatening to
existing cryptography.

7/22

Factoring

N = pq

N = 15 = 3 ⇥ 5

8/22

Modular square root

Finding the modular square root

s2 mod N = 1

s =
p

1 mod N

Trivial roots would be s = ±1.
I Are there other (nontrivial) square roots?
I For N = 15, s = ±4, s = ±11, s = ±14 are all nontrivial square roots. (Show

this).
I Later in these slides, we will see how nontrivial square roots are useful for

factoring.

S modHEY S modH 9
52.4 mod N 0 529mNEO
5 2 5 2 mod n

s
sound

521 mod NEO
s 1 S 1 modne 0

Mtricrial
no

9/22

Discrete log

1. Pick a that is relatively prime with N.
2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm.

For example, a=6 and n=15.

Exercise: list the possible a’s for N = 15.

µ

2 4 7 8 11 13 14

10/22

Discrete log

1. Pick a that is relatively prime with N.
2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm.

For example, a = 6 and n = 15.
So now our factoring problem is:

ar mod N = 1

ar ⌘ 1 mod N

In fact, this algorithm for finding discrete log even more directly attacks other
crypto primitives such as Diffie-Hellman key exchange.

d

at o modN

S AE

11/22

Order finding

Our discrete log problem is equivalent to order finding.
a1 mod 15 a2 mod 15 a3 mod 15 a4 mod 15

a=2 2 4 8 1
a=4 4 1 4 1
a=7 7 4 13 1
a=8 8 4 2 1

a=11 11 1 11 1
a=13 13 4 7 1
a=14 14 1 14 1

Find smallest r such that ar ⌘ 1 mod N

9 3 3912631
0 0 at

If
e

r

12/22

Period finding

In other words, the problem by now can also be phrased as finding the period of a
function.

f (x) = f (x + r)

Where
f (x) = ax = ax+r mod N

Find r.

13/22

What to do after quantum algorithm gives you r

I If r is odd or if a
r
2 + 1 ⌘ 0 mod N, abandon.

I There is separate theorem saying no more than a quarter of trials would have
to be tossed.

Exercise: try for a = 14.

9 14 1 14 1 15 0 modN
don't use a as trivial roof

14/22

What to do after quantum algorithm gives you r
I If r is odd or if a

r
2 + 1 ⌘ 0 mod N, abandon.

I There is separate theorem saying no more than a quarter of trials would have
to be tossed.

Exercise: try for a = 14.

Otherwise, factors are GCD(a r
2 ± 1, N)

a=2 r=4 22 ± 1 = 4 ± 1
a=4 r=2 41 ± 1 = 4 ± 1
a=7 r=4 72 ± 1 = 49 ± 1
a=8 r=4 82 ± 1 = 64 ± 1

a=11 r=2 111 ± 1 = 11 ± 1
a=13 r=4 132 ± 1 = 169 ± 1
a=14 r=2 142 ± 1 = 196 ± 1 (bad case)

Notice why we discarded 14.

15/22

Proof why this works and why factoring is modular square root

ar ⌘ 1 mod N

So now a
r
2 is a nontrivial square root of 1 mod N.

ar � 1 ⌘ 0 mod N

(a
r
2 � 1)(a

r
2 + 1) ⌘ 0 mod N

The above implies that
(a

r
2 � 1)(a

r
2 + 1)

N
is an integer. So now we have to prove that

1. a
r
2 �1
N is not an integer, and

2. a
r
2 +1
N is not an integer.

a L N

a 1 a 1 kN
1aEn k

449 k

16/22

Proof why this works and why factoring is modular square root

Suppose a
r
2 �1
N is an integer

that would imply
a

r
2 � 1 ⌘ 0 mod N

a
r
2 ⌘ 1 mod N

but we already defined r is the smallest such that ar ⌘ 1 mod N, so there is a

contradiction, so a
r
2 �1
N is not an integer.

Suppose a
r
2 +1
N is an integer

that would imply
a

r
2 + 1 ⌘ 0 mod N

but we already eliminated such cases because we know this doesn’t give us a
useful result.

17/22

Table of contents

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

Shor’s algorithm quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation
Measurement of target (bottom, ancillary) qubit register

Simon’s algorithm: setting up for quantum Fourier transform

18/22

The quantum part: period finding using quantum Fourier transform

I After picking a value for a, use quantum parallelism to calculate modular
exponentiation: ax mod N for all 0  x  2n � 1 simultaneously.

I Use interference to find a global property, such as the period r.

19/22

Calculate modular exponentiation

Controlled adder (Section 4.3; Listing 2, 3)

Controlled modular multiplier (Listing 4)

Controlled modular exponentiation

Lower target register
Classical initial state

(Section 4.1)

Deallocated ancillary qubits
Classical final state

(Section 4.6)

Increasing entanglement “memory allocation” (Section 4.4) Decreasing entanglement “garbage collection” (Section 4.5)

Quantum
Fourier

transform
(Section 4.2;

Listing 1)

Inverse
quantum
Fourier

transform

Upper control register
Classical initial state

(Section 4.1)

Measurement

Classical
result

I Image source: Huang and Martonosi, Statistical assertions for validating
patterns and finding bugs in quantum programs, 2019.

I A good source on how to build the controlled adder, controlled multiplier,
and controlled exponentiation is in Beauregard, Circuit for Shor’s algorithm
using 2n+3 qubits, 2002.

20/22

Calculate modular exponentiation

I State after applying modular exponentiation circuit is

1p
2n

2n�1X

x=0

|xi |f (x)i

I Concretely, using our running example of N = 15, need n = 4 qubits to
encode, and suppose we picked a = 2, the state would be

1
4

15X

x=0

|xi |2x mod 15i

21/22

Measurement of target (bottom, ancillary) qubit register

I We then measure the target qubit register, collapsing it to a definite value. The
state of the upper register would then be limited to:

1p
A

A�1X

a=0

|x0 + ari

I Concretely, using our running example of N = 15, and suppose we picked
a = 2, and suppose measurement results in 2, the upper register would be a
uniform superposition of all |xi such that 2x ⌘ 2 mod 15:

|1i
2

+
|5i
2

+
|9i
2

+
|13i

2

I The key trick now is can we extract the period r = 4 from such a quantum
state. We do this using the quantum Fourier transform.

22/22

Table of contents

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

Shor’s algorithm quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation
Measurement of target (bottom, ancillary) qubit register

Simon’s algorithm: setting up for quantum Fourier transform

