Quantum algorithms: Shor’s integer factoring quantum
part

Yipeng Huang
Rutgers University

February 21, 2024

1/22

Trooy |0 gl 0
E«m Y00)
0
ﬁé(o) AR
v 6>
@ |«
gt ’\0 ”{O b‘(. [g;j?@ (Z@(§>
QW = Ve D) O
3 Sl =I5
‘C[Qﬁ> N
- u 03\> JO{OB
SHEPER fows
(coo> [ory ifj ’[ZS’Z

“XL T 3
2 =
L Xz

Table of contents

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

Shor’s algorithm quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation

Measurement of target (bottom, ancillary) qubit register

Simon’s algorithm: setting up for quantum Fourier transform

2/22

P\ﬁ\&/&l@ k@ s WTCO ,

HAES - 756
fgj djgw{ Pution, | @(CWQA ’
Coyplo- Dot
“ i bl
- px iji
i:(P %M ﬁwﬁ@@qm«yj
: diertn Heg
FS@T?%/EWW%Z Cerl e
S
f@g{ @u&mﬁm Oryféo
Nolhivey
McEne —

\AVe

The factoring problem

One way functions for cryptography
1. Multiplying two b-bit numbers: on order of b* time.

3
2. Best known classical algorithm to factor a b-bit number: on order of about Vb
time.

» Makes multiplying large primes a candidate one-way function.

» [t's an open question of mathematics to prove whether one way functions
exist.

Public key cryptography
Numberphile YouTube channel explanation of RSA public key cryptography:
https://www.youtube.com/watch?v=M7kEpwltn50

3/22

https://www.youtube.com/watch?v=M7kEpw1tn50

The factoring problem

One way functions for cryptography
1. Multiplying two b-bit numbers: on order of b* time.
2. Best known classical algorithm to factor a b-bit number: on order of about o Vb
time.
Quantum integer factoring algorithm

» Quantum algorithm to factor a b-bit number: b°.
» Peter Shor, 1994.

» Important example of quantum algorithm offering exponential speedup.

4/22

Table of contents

The factoring problem
Shor’s algorithm classical part: converting factoring to period finding

Factoring to modular square root
Modular square root to discrete logarithm

Discrete logarithm to order finding
Order finding to period finding jﬁ\(Xz]D (¥) v

Shor’s algorithm quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation

Measurement of target (bottom, ancillary) qubit register

Simon’s algorithm: setting up for quantum Fourier transform

5/22

The classical part: converting factoring to order finding / period
finding

General strategy for the classical part

1. Factoring

2. Modular square root
3. Discrete logarithm
4. Order finding

5. Period finding

The fact that a quantum algorithm can support all these primitives leads to
additional ways that future quantum computing can be useful / threatening to
existing cryptography:.

6/22

Factoring

N =pq
N=15=3x5

7/22

Modular square root S wed N T ¢
S-q vnd 1z o

Finding the modular square root (SHLJ(S-2) wed oz D
s> mod N =1
s=+1 mod N

Trivial roots would be s = +1,
» Are there other (nontrivial) square roots?

» For N =15,s = £4, s = £11, s =.+14 are all nontrivial square roots. (Show
this).

» Later in these slides, we will see how nontrivial square roots are useful for
factoring.

8/22

Discrete log

1. Pick a that is relatively prime with N.

2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm.
For example, a=6 and n=15.

Exercise: list the possible a’s for N = 15.

9/22

Discrete log

1. Pick a that is relatively prime with N.

2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm.
For example, a = 6 and n = 15.

So now our factoring problem is:
a mod N=1

ad =1 modN

In fact, this algorithm for finding discrete log even more directly attacks other
crypto primitives such as Diffie-Hellman key exchange.

10/22

Order find}fng/

VE 9 2 5 S -

Our discrete log problem is equivalent to order finding.

4D mod 15 | 42’ mod 15 | 23 mod 15 | #* mod 15
a=2 | 2 4 3 1 >
a=4 14 — |1 14 |1
a=7 7 |4 |13 |1
a=8 | 8 4 2 1
a=11 | 11 1 11 1
a=13 | 13 4 7 1
a=14 | 14 1 14 1

Find smallest r such thata” =1 mod N

47 —

11/22

Period finding

In other words, the problem by now can also be phrased as finding the period of a
function.

fx) = flx+7)

Where
f(x) =a*=a""" mod N

Find 7.

12/22

What to do after quantum algorithm gives you r

» Ifrisoddorifaz +1 =0 mod N, abandon.

» There is separate theorem saying no more than a quarter of trials would have
to be tossed.

Exercise: try for a = 14.

dant wie (o | W]

13/22

What to do after quantum algorithm gives you r

» Ifrisodd orifaz +1=0 mod N, abandon.

» There is separate theorem saying no more than a quarter of trials would have
to be tossed.

Exercise: try for a = 14.

Otherwise, factors are GCD(az +1, N)

a=2 r=4|22+1=4+1
a=4 r=2 |414+1=44+1
a=7 r=4 | 72+1=49+1
a=8 r=4 | 8 +t1=64+1
a=11 r=2 | 11'+1=11+1
a=13 r=4 | 132+1 =169+ 1
—— a=14 r=2 | 14°+1=196+1 (bad case)

Notice why we discarded 14.

14/22

Proof why this works and why factoring is modular square root

ad =1 modN

So now a2 is a nontrivial square root of 1 mod N.
a —1=0 modN

(a2 —1)(a2+1)=0 mod N
The above implies that
(a3 — 1)(a? +1)
N
is an integer. So now we have to prove that

trat

r
1. 22=1 is not an integer, and
N

NI=

2. 224l isnot an integer.

15/22

Proof why this works and why factoring is modular square root

,
a2 —1
Suppose “=;

is an integer

that would imply
a2 —1=0 mod N

=1 modN

NI =

a

but we already defined r is the smallest such that 4" =1 mod N, so there is a

r
contradiction, so “ZN_ 1l isnotan integer.

a§+1
N
that would imply

Suppose is an integer

a§—|—150 mod N

but we already eliminated such cases because we know this doesn’t give us a
useful result.

16/22

Table of contents

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

Shor’s algorithm quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation

Measurement of target (bottom, ancillary) qubit register

Simon’s algorithm: setting up for quantum Fourier transform

17/22

The quantum part: period finding using quantum Fourier transform

> After picking a value for 4, use quantum parallelism to calculate modular
exponentiation: #* mod N for all 0 < x < 2" — 1 simultaneously.

» Use interference to find a global property, such as the period r.

18/22

Calculate modular exponentiation

Upper control register
Classicalinitial state
(Section4.1)

Increasing entanglement “memory allocation” (Section 4.4)

Lower targetregister
Classical initial state
(Section4.1)

—>
—S

—>

>
Quantum >
Fourier Inverse
transform quantum
(Section 4.2; Fourier
Listing 1) >| transform

A

Measurement

Classical
result

> >

. Controlled adder (Section 4.3; Listing 2, 3) .

* Controlled modular multiplier (Listing4) *

(] L[]
—_— Controlled modular exponentiation —

Decreasing entanglement “garbage collection” (Section 4.5)

Deallocated ancillary qubits
Classical final state
(Section 4.6)

» Image source: Huang and Martonosi, Statistical assertions for validating
patterns and finding bugs in quantum programs, 2019.

» A good source on how to build the controlled adder, controlled multiplier,
and controlled exponentiation is in Beauregard, Circuit for Shor’s algorithm
using 2n+3 qubits, 2002.

19/22

Calculate modular exponentiation

> State after applying modular exponentiation circuit is

» Concretely, using our running example of N = 15, need n = 4 qubits to
encode, and suppose we picked a = 2, the state would be

15

1
1 > %) [2° mod 15)
x=0

20/22

Measurement of target (bottom, ancillary) qubit register

> We then measure the target qubit register, collapsing it to a definite value. The
state of the upper register would then be limited to:

A-1

% > lxo +ar)

a=0

» Concretely, using our running example of N = 15, and suppose we picked
a = 2, and suppose measurement results in 2, the upper register would be a
uniform superposition of all |x) such that 2* =2 mod 15:

B, 19, [13)
2+2+2+2

» The key trick now is can we extract the period r = 4 from such a quantum
state. We do this using the quantum Fourier transform.

21/22

Table of contents

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

Shor’s algorithm quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation

Measurement of target (bottom, ancillary) qubit register

Simon’s algorithm: setting up for quantum Fourier transform

22/22

