
1/37

Representing and Manipulating Information:
Fixed point, floating point normalized and denormalized

numbers

Yipeng Huang

Rutgers University

February 22, 2024

 



2/37

Table of contents
Announcements

Programming assignment 2
Integers and basic arithmetic

Representing negative and signed integers
Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers

Normalized: exp field
Normalized: frac field
Normalized: example

Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples

Floats: Special cases
Floats: Summary



3/37

Programming assignment 2

Programming assignment 2

1. Due Friday 2/23.
2. Graph algorithms and hash table.



4/37

Table of contents
Announcements

Programming assignment 2
Integers and basic arithmetic

Representing negative and signed integers
Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers

Normalized: exp field
Normalized: frac field
Normalized: example

Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples

Floats: Special cases
Floats: Summary



5/37

Representing negative and signed integers

Ways to represent negative numbers

1. Sign magnitude
2. 1s’ complement
3. 2’s complement



6/37

Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

I what is the most positive value you can represent? 127
I what is the most negative value you can represent? -128
I how to represent -1? 11111111
I how to represent -2? 11111110

1 flipall bits
2

2



7/37

Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

I MSB: 1 for negative
I To make a number negative: flip all bits and add 1.
I Addition in 2’s complement is sound



8/37

Importance of paying attention to limits of encoding

0 2 4 6 8 10 
12 14 

0 
2 

4 
6 

8 
10 

12 
14 

0 
4 
8 

12 
16 
20 
24 
28 
32 

Integer addition 

Figure: Image credit: CS:APP

0 2 4 6 8 10 12 14 
0 

2 
4 

6 
8 

10 
12 

14 

0 
2 
4 
6 
8 

10 
12 
14 
16 

Unsigned addition (4-bit word) 

Normal 

Overflow 

Figure: Image credit: CS:APP

15 15 30

15

1



9/37

Importance of paying attention to limits of encoding

0 2 4 6 8 10 
12 14 

0 
2 

4 
6 

8 
10 

12 
14 

0 
4 
8 

12 
16 
20 
24 
28 
32 

Integer addition 

Figure: Image credit: CS:APP

-8 -6 -4 -2 0 2 4 6 
-8 

-6 
-4 

-2 
0 

2 
4 

6 

-8 
-6 
-4 
-2 
0 
2 
4 
6 
8 

Two's complement addition (4-bit word) 

Normal 

Positive 
overflow 

Negative 
overflow 

Figure: Image credit: CS:APP

https://www.theatlantic.com/technology/archive/2014/12/
how-gangnam-style-broke-youtube/383389/

A

https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/
https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/


232 230
2

230 22 2 2

4 240410 101 4 410
3

4 1000 4 109 4 Billion

T.gigabye109bytes.GIBgigiby.ee 12013



10/37

Table of contents
Announcements

Programming assignment 2
Integers and basic arithmetic

Representing negative and signed integers
Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers

Normalized: exp field
Normalized: frac field
Normalized: example

Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples

Floats: Special cases
Floats: Summary



6 251

9911
Is it too 00

06.251

6 2510000

Éq



11/37

Unsigned fixed-point binary for fractions


�
�
	
bm	
 bm–1	
 b2	
 b1	
 b0	
 b–1	
 b–2	
 b–3	
 b–n+1	

�
�
	
 .	

1	

2	

4	


2m–1	


2m	



�
�
	


�
�
	


1/2	

1/4	

1/8	


1/2n–1	


b–n	


1/2n	


Figure: Fractional binary. Image credit CS:APP

fractional
decimal
scientifinotation



12/37

Unsigned fixed-point binary for fractions

unsigned fixed-point char example weight in decimal
1000.0000 8
0100.0000 4
0010.0000 2
0001.0000 1
0000.1000 0.5
0000.0100 0.25
0000.0010 0.125
0000.0001 0.0625

Table: Weight of each bit in an example fixed-point binary number

I .625 = .5 + .125 = 0000.10102

I 1001.10002 = 9 + .5 = 9.5

E



3 14 c

3 14 3.14110

f bit unsigned fixed point w

binary point at 4 places

from MSB

0012.0010 2 1 18 3.125

0.0820

0.50

0.1 0.15 0.115

ft fatty
1



13/37

Signed fixed-point binary for fractions

signed fixed-point char example weight in decimal
1000.0000 -8
0100.0000 4
0010.0000 2
0001.0000 1
0000.1000 0.5
0000.0100 0.25
0000.0010 0.125
0000.0001 0.0625

Table: Weight of each bit in an example fixed-point binary number

I �.625 = �8 + 4 + 2 + 1 + 0 + .25 + .125 = 1111.01102

I 1001.10002 = �8 + 1 + .5 = �6.5



14/37

Limitations of fixed-point

I Can only represent numbers of the form x/2k

I Cannot represent numbers with very large magnitude (great range) or very
small magnitude (great precision)



15/37

Bit shifting

<< N Left shift by N bits
I multiplies by 2N

I 2 << 3 = 0000_00102 << 3 = 0001_00002 = 16 = 2 ⇤ 23

I �2 << 3 = 1111_11102 << 3 = 1111_00002 = �16 = �2 ⇤ 23

>> N Right shift by N bits
I divides by 2N

I 16 >> 3 = 0001_00002 >> 3 = 0000_00102 = 2 = 16/23

I �16 >> 3 = 1111_00002 >> 3 = 1111_11102 = �2 = �16/23I
pop



16/37

Table of contents
Announcements

Programming assignment 2
Integers and basic arithmetic

Representing negative and signed integers
Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers

Normalized: exp field
Normalized: frac field
Normalized: example

Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples

Floats: Special cases
Floats: Summary



17/37

monteCarloPi.c Using floating point and random numbers to
estimate PIp

randx
To

radYfor 1610000072

iterations
addffyinsides

1 1 I addtally
SEEIN



18/37

Table of contents
Announcements

Programming assignment 2
Integers and basic arithmetic

Representing negative and signed integers
Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers

Normalized: exp field
Normalized: frac field
Normalized: example

Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples

Floats: Special cases
Floats: Summary



19/37

Floating point numbers

Avogadro’s number
+6.02214 ⇥ 1023 mol�1

Scientific notation
I sign
I mantissa or significand
I exponent



20/37

Floating point numbers
Before 1985

1. Many floating point systems.
2. Specialized machines such as Cray supercomputers.
3. Some machines with specialized floating point have had to be kept alive to

support legacy software.

After 1985
1. IEEE Standard 754.
2. A floating point standard designed for good numerical properties.
3. Found in almost every computer today, except for tiniest microcontrollers.

Recent
1. Need for both lower precision and higher range floating point numbers.
2. Machine learning / neural networks. Low-precision tensor network

processors.



21/37

Floats and doubles

31	
30	
 23	
22	
 0	


s exp frac 

63	
62	
 52	
51	
 	


s exp frac (51:32)	


Single precision	


Double precision	


frac (31:0)	

31	
 0	


32	


Figure: The two standard formats for floating point data types. Image credit CS:APP



22/37

Floats and doubles

property half* float double

total bits 16 32 64
s bit 1 1 1

exp bits 5 8 11
frac bits 10 23 52

C printf() format specifier None "%f" "%lf"

Table: Properties of floats and doubles



23/37

The IEEE 754 number line

–∞ –10 –5 0 +5 +10 +∞ 

Denormalized Normalized Infinity 

Figure: Full picture of number line for floating point values. Image credit CS:APP

–1 –0.8 –0.6 –0.4 –0.2 0 +0.2 +0.4 +0.6 +0.8 +1 
Denormalized Normalized Infinity 

+0 –0 

Figure: Zoomed in number line for floating point values. Image credit CS:APP



24/37

Different cases for floating point numbers
Value of the floating point number = (�1)s ⇥ M ⇥ 2E

I E is encoded the exp field
I M is encoded the frac field

s	
 ≠ 0 & ≠ 255 f	


1. Normalized 

s	
 f	


s	


s	
 ≠ 0	


2. Denormalized 

3a. Infinity 

3b. NaN 

1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 

Figure: Different cases within a floating point format. Image credit CS:APP

Normalized and denormalized numbers
Two different cases we need to consider for the encoding of E, M



25/37

Table of contents
Announcements

Programming assignment 2
Integers and basic arithmetic

Representing negative and signed integers
Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers

Normalized: exp field
Normalized: frac field
Normalized: example

Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples

Floats: Special cases
Floats: Summary



26/37

Normalized: exp field

For normalized numbers,
0 < exp < 2k � 1
I exp is a k-bit unsigned integer

Bias
I need a bias to represent negative

exponents
I bias = 2k�1 � 1
I bias is the k-bit unsigned integer:

011..111

For normalized numbers,
E = exp-bias
In other words, exp = E+bias

property float double

k 8 11
bias 127 1023

smallest E (greatest precision) -126 -1022
largest E (greatest range) 127 1023

Table: Summary of normalized exp field



27/37

Normalized: frac field

M = 1.frac



28/37

Normalized: example

I 12.375 to single-precision floating point
I sign is positive so s=0
I binary is 1100.0112

I in other words it is 1.1000112 ⇥ 23

I exp = E + bias = 3 + 127 = 130 = 1000_00102

I M = 1.1000112 = 1.frac
I frac = 100011



29/37

Table of contents
Announcements

Programming assignment 2
Integers and basic arithmetic

Representing negative and signed integers
Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers

Normalized: exp field
Normalized: frac field
Normalized: example

Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples

Floats: Special cases
Floats: Summary



30/37

The IEEE 754 number line

–∞ –10 –5 0 +5 +10 +∞ 

Denormalized Normalized Infinity 

Figure: Full picture of number line for floating point values. Image credit CS:APP

–1 –0.8 –0.6 –0.4 –0.2 0 +0.2 +0.4 +0.6 +0.8 +1 
Denormalized Normalized Infinity 

+0 –0 

Figure: Zoomed in number line for floating point values. Image credit CS:APP



31/37

Denormalized: exp field

For denormalized numbers, exp = 0

Bias
I need a bias to represent negative

exponents
I bias = 2k�1 � 1
I bias is the k-bit unsigned integer:

011..111

For denormalized numbers,
E = 1-bias

property float double

k 8 11
bias 127 1023

E -126 -1022

Table: Summary of denormalized exp field



32/37

Denormalized: frac field

M = 0.frac
value represented leading with 0



33/37

Denormalized: examples



34/37

Table of contents
Announcements

Programming assignment 2
Integers and basic arithmetic

Representing negative and signed integers
Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers

Normalized: exp field
Normalized: frac field
Normalized: example

Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples

Floats: Special cases
Floats: Summary



35/37

Floats: Special cases

number class when it arises exp field frac field

+0 / -0 0 0
+infinity / -infinity overflow or division by 0 2k � 1 0
NaN not-a-number illegal ops. such as

p
�1, inf-inf, inf*0 2k � 1 non-0

Table: Summary of special cases



36/37

Table of contents
Announcements

Programming assignment 2
Integers and basic arithmetic

Representing negative and signed integers
Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers

Normalized: exp field
Normalized: frac field
Normalized: example

Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples

Floats: Special cases
Floats: Summary



37/37

Floats: Summary

normalized denormalized

value of number (�1)s ⇥ M ⇥ 2E (�1)s ⇥ M ⇥ 2E

E E = exp-bias E = -bias + 1
bias 2k�1 � 1 2k�1 � 1
exp 0 < exp < (2k � 1) exp = 0

M M = 1.frac M = 0.frac
M has implied leading 1 M has leading 0

greater range greater precision
large magnitude numbers small magnitude numbers
denser near origin evenly spaced

Table: Summary of normalized and denormalized numbers


