Representing and Manipulating Information: Fixed point, floating point normalized and denormalized numbers

Yipeng Huang

Rutgers University
February 22, 2024

Table of contents
 Announcements

Programming assignment 2
Integers and basic arithmetic
Representing negative and signed integers
Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example
Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples
Floats: Special cases
Floats: Summary

Programming assignment 2

Programming assignment 2

1. Due Friday $2 / 23$.
2. Graph algorithms and hash table.

Table of contents
 Announcements

Programming assignment 2
Integers and basic arithmetic
Representing negative and signed integers
Fractions and fixed point representation
montecarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example
Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples
Floats: Special cases
Floats: Summary

Representing negative and signed integers

Ways to represent negative numbers

1. Sign magnitude
2. $1 \mathrm{~s}^{\prime}$ complement
3. 2's complement

Representing negative and signed integers

2's complement

Table: Weight of each bit in a signed char type

- what is the most positive value you can represent? 127
- what is the most negative value you can represent? -128
- how to represent -1? 11111111
- how to represent -2? 11111110

Representing negative and signed integers

2's complement

signed char	weight in decimal
00000001	1
00000010	2
00000100	4
00001000	8
00010000	16
00100000	32
01000000	64
10000000	-128

Table: Weight of each bit in a signed char type

- MSB: 1 for negative
- To make a number negative: flip all bits and add 1.
- Addition in 2's complement is sound

Importance of paying attention to limits of encoding

Figure: Image credit: CS:APP

Figure: Image credit: CS:APP

Importance of paying attention to limits of encoding

Figure: Image credit: CS:APP

Figure: Image credit: CS:APP
https://www.theatlantic.com/technology/archive/2014/12/ how-gangnam-style-broke-youtube/383389/

$$
\begin{aligned}
& z^{32}=2^{30+2}=z^{30} \times 2^{2}=2^{2} \times z^{30} \\
& =4 \times 2^{(10+10+10)}=4 \times\left(2^{10}\right)^{3} \\
& \\
& \approx 4 \times(1000)^{3}=4 \times 10^{9}=4 \text { Billion } \\
& \text { GB }=\text { gigabyte }=10^{9} \text { bytes } \\
& \text { GIB }=\text { gigibyle }=\left(2^{10}\right)^{3}
\end{aligned}
$$

Table of contents
 Announcements

Programming assignment 2

Integers and basic arithmetic

Representing negative and signed integers
Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example
Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples
Floats: Special cases
Floats: Summary

$$
\begin{aligned}
& 6.251 \\
& 06.251 \\
& 6.2510000 \\
& 2.02 \\
& 2.000000^{\circ \prime} \in
\end{aligned}
$$

Unsigned fixed-point binary for fractions

Figure: Fractional binary. Image credit CS:APP

Unsigned fixed-point binary for fractions

Table: Weight of each bit in an example fixed-point binary number
-. $625=.5+.125=0000.1010_{2}$

- $1001.1000_{2}=9+.5=9.5$
$3.14 \xrightarrow{\text { shift left by } 1} 31.4$
3.1410

$$
3.14 \times 10^{1}
$$

f-bit assigned fixed point wi binary port at a places from MSB.

$$
\begin{aligned}
& \begin{array}{ll}
111 \\
8921 & -1 \\
\frac{1}{2} & \frac{1}{4} \\
\frac{1}{8} & \frac{1}{6} \\
\hline
\end{array} \\
& 0011.0010 \rightarrow 2+1+\frac{1}{8}=3.125 \\
& \begin{array}{l}
0.1410 \\
0.12510 \\
\hline 0.06510 \\
0.0625
\end{array} \\
& \frac{1}{3}=0 . \overline{3}_{10} \\
& 0 . \overline{1}_{2}=0.1 \overline{1}_{2}=0.11 \overline{1}_{z} \\
& =\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{6 y} \\
& \rightarrow 1
\end{aligned}
$$

Signed fixed-point binary for fractions

signed fixed-point char example	weight in decimal
1000.0000	-8
0100.0000	4
0010.0000	2
0001.0000	1
0000.1000	0.5
0000.0100	0.25
0000.0010	0.125
0000.0001	0.0625

Table: Weight of each bit in an example fixed-point binary number

- $-.625=-8+4+2+1+0+.25+.125=1111.0110_{2}$
- $1001.1000_{2}=-8+1+.5=-6.5$

Limitations of fixed-point

- Can only represent numbers of the form $x / 2^{k}$
- Cannot represent numbers with very large magnitude (great range) or very small magnitude (great precision)

Bit shifting

$\ll N$ Left shift by N bits

- multiplies by 2^{N}
- $2 \ll 3=0000 _0010_{2} \ll 3=0001 _0000_{2}=16=2 * 2^{3}$
$-2 \ll 3=1111 _1110_{2} \ll 3=1111 _0000_{2}=-16=-2 * 2^{3}$
>> N Right shift by N bits
- divides by 2^{N}
$\rightarrow 16 \gg 3=0001 _0000_{2} \gg 3=0000 _0010_{2}=2=16 / 2^{3}$
$-\underline{-16} \gg \underline{3}=111 _0000_{2} \gg 3=1111 _1110_{2}=-2=-16 / 2^{3}$

Table of contents
 Announcements

Programming assignment 2
Integers and basic arithmetic
Representing negative and signed integers
Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example
Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples
Floats: Special cases
Floats: Summary
monteCarloPi.c Using floating point and random numbers to estimate PI

$1 \cdot 1 \cdot \pi=$ ratio. $1.1 \cdot 4$
$\pi=$ G. ratio.
rand x
rand if for $(140100000)\{$ $\left.r^{\prime}+t\left(\operatorname{rand} x^{2}+\operatorname{rand}\right)^{2}\right)<1$ add co tally asides
add tally
3 inside
ont

Table of contents
 Announcements

Programming assignment 2

Integers and basic arithmetic

Representing negative and signed integers
Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example
Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples
Floats: Special cases
Floats: Summary

Floating point numbers

Avogadro's number
$+6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
Scientific notation

- sign
- mantissa or significand
- exponent

Floating point numbers

Before 1985

1. Many floating point systems.
2. Specialized machines such as Cray supercomputers.
3. Some machines with specialized floating point have had to be kept alive to support legacy software.

After 1985

1. IEEE Standard 754.
2. A floating point standard designed for good numerical properties.
3. Found in almost every computer today, except for tiniest microcontrollers.

Recent

1. Need for both lower precision and higher range floating point numbers.
2. Machine learning / neural networks. Low-precision tensor network processors.

Floats and doubles

Single precision
3130
2322

S	\exp	frac

Double precision

63	5251		32
S	exp	frac (51:32)	

31
frac (31:0)

Figure: The two standard formats for floating point data types. Image credit CS:APP

Floats and doubles

property	half *	float	double
total bits	16	32	64
s bit	1	1	1
exp bits	5	8	11
frac bits	10	23	52
C printf（）format specifier	None	＂\％f＂	＂\％lf＂

Table：Properties of floats and doubles

The IEEE 754 number line

Figure: Full picture of number line for floating point values. Image credit CS:APP

Figure: Zoomed in number line for floating point values. Image credit CS:APP

Different cases for floating point numbers

Value of the floating point number $=(-1)^{s} \times M \times 2^{E}$

- E is encoded the exp field
- M is encoded the frac field

Figure: Different cases within a floating point format. Image credit CS:APP

Normalized and denormalized numbers
Two different cases we need to consider for the encoding of E, M

Table of contents
 Announcements

Programming assignment 2
Integers and basic arithmetic
Representing negative and signed integers
Fractions and fixed point representation
montecarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example
Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples
Floats: Special cases
Floats: Summary

Normalized: \exp field

For normalized numbers,
$0<\exp <2^{k}-1$

- \exp is a k-bit unsigned integer

Bias

- need a bias to represent negative exponents
- bias $=2^{k-1}-1$
- bias is the k-bit unsigned integer: 011.. 111

property	float	double
k	8	11
bias	127	1023
smallest E (greatest precision)	-126	-1022
largest E (greatest range)	127	1023

Table: Summary of normalized exp field

For normalized numbers,

$E=$ exp-bias
In other words, $\exp =\mathrm{E}+$ bias

Normalized: frac field

$\mathrm{M}=1 . \mathrm{frac}$

Normalized: example

- 12.375 to single-precision floating point
- sign is positive so $\mathrm{s}=0$
- binary is 1100.011_{2}
- in other words it is $1.100011_{2} \times 2^{3}$
- $\exp =E+$ bias $=3+127=130=1000 _0010_{2}$
- $\mathrm{M}=1.100011_{2}=1$.frac
- $\mathrm{frac}=100011$

Table of contents
 Announcements

Programming assignment 2
Integers and basic arithmetic
Representing negative and signed integers
Fractions and fixed point representation
montecarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example
Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples
Floats: Special cases
Floats: Summary

The IEEE 754 number line

Figure：Full picture of number line for floating point values．Image credit CS：APP

Figure：Zoomed in number line for floating point values．Image credit CS：APP

Denormalized: \exp field

For denormalized numbers, $\exp =0$

Bias

- need a bias to represent negative exponents
- bias $=2^{k-1}-1$
- bias is the k-bit unsigned integer: 011.. 111

property	float	double
k	8	11
bias	127	1023
E	-126	-1022

Table: Summary of denormalized exp field
For denormalized numbers, $\mathrm{E}=1$-bias

Denormalized: frac field

$\mathrm{M}=0 . \mathrm{frac}$
value represented leading with 0

Denormalized: examples

Table of contents
 Announcements

Programming assignment 2

Integers and basic arithmetic

Representing negative and signed integers
Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example
Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples
Floats: Special cases
Floats: Summary

Floats: Special cases

number class	when it arises	\exp field	frac field
$+0 /-0$		0	0
+infinity $/$-infinity	overflow or division by 0	$2^{k}-1$	0
NaN not-a-number	illegal ops. such as $\sqrt{-1}$, inf-inf, inf*0	$2^{k}-1$	non-0

Table: Summary of special cases

Table of contents
 Announcements

Programming assignment 2
Integers and basic arithmetic
Representing negative and signed integers
Fractions and fixed point representation
montecarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example
Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples
Floats: Special cases
Floats: Summary

Floats: Summary

	normalized	denormalized
value of number	$(-1)^{s} \times M \times 2^{E}$	$(-1)^{s} \times M \times 2^{E}$
E	$\mathrm{E}=\exp$-bias	$\mathrm{E}=-$-bias +1
bias	$2^{k-1}-1$	$2^{k-1}-1$
\exp	$0<\exp <\left(2^{k}-1\right)$	$\exp =0$
M	$\mathrm{M}=1$. frac	$\mathrm{M}=0$. frac
	M has implied leading 1	M has leading 0
	greater range large magnitude numbers	greater precision
	small magnitude numbers	
	evenly spaced	

Table: Summary of normalized and denormalized numbers

