
1/31

Quantum algorithms: Shor’s integer factoring quantum
part

Yipeng Huang

Rutgers University

February 23, 2024

ProgAssignment 2

ProblemSets 1 2 3

Project Parameters for project

Png Assignent 2 3 near term ago
optingann
chem

2/31

Table of contents

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

Simon’s algorithm: setting up for quantum Fourier transform

Shor’s algorithm quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation
Measurement of target (bottom, ancillary) qubit register
Quantum Fourier transform to obtain period
How to construct the Quantum Fourier transform
Evaluation of Shor’s as a fault-tolerant quantum algorithm

3/31

The factoring problem

One way functions for cryptography

1. Multiplying two b-bit numbers: on order of b
2 time.

2. Best known classical algorithm to factor a b-bit number: on order of about 2
3p

b

time.

I Makes multiplying large primes a candidate one-way function.
I It’s an open question of mathematics to prove whether one way functions

exist.

Public key cryptography
Numberphile YouTube channel explanation of RSA public key cryptography:
https://www.youtube.com/watch?v=M7kEpw1tn50

https://www.youtube.com/watch?v=M7kEpw1tn50

4/31

The factoring problem

One way functions for cryptography

1. Multiplying two b-bit numbers: on order of b
2 time.

2. Best known classical algorithm to factor a b-bit number: on order of about 2
3p

b

time.

Quantum integer factoring algorithm
I Quantum algorithm to factor a b-bit number: b

3.
I Peter Shor, 1994.
I Important example of quantum algorithm offering exponential speedup.

5/31

Table of contents

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

Simon’s algorithm: setting up for quantum Fourier transform

Shor’s algorithm quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation
Measurement of target (bottom, ancillary) qubit register
Quantum Fourier transform to obtain period
How to construct the Quantum Fourier transform
Evaluation of Shor’s as a fault-tolerant quantum algorithm

6/31

The classical part: converting factoring to order finding / period
finding

General strategy for the classical part

1. Factoring
2. Modular square root
3. Discrete logarithm
4. Order finding
5. Period finding

The fact that a quantum algorithm can support all these primitives leads to
additional ways that future quantum computing can be useful / threatening to
existing cryptography.

7/31

Factoring

N = pq

N = 15 = 3 ⇥ 5

8/31

Modular square root

Finding the modular square root

s
2 mod N = 1

s =
p

1 mod N

Trivial roots would be s = ±1.
I Are there other (nontrivial) square roots?
I For N = 15, s = ±4, s = ±11, s = ±14 are all nontrivial square roots. (Show

this).
I Later in these slides, we will see how nontrivial square roots are useful for

factoring.

9/31

Discrete log

1. Pick a that is relatively prime with N.
2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm.

For example, a=6 and n=15.

Exercise: list the possible a’s for N = 15.

10/31

Discrete log

1. Pick a that is relatively prime with N.
2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm.

For example, a = 6 and n = 15.
So now our factoring problem is:

a
r mod N = 1

a
r ⌘ 1 mod N

In fact, this algorithm for finding discrete log even more directly attacks other
crypto primitives such as Diffie-Hellman key exchange.

11/31

Order finding

Our discrete log problem is equivalent to order finding.
a

1 mod 15 a
2 mod 15 a

3 mod 15 a
4 mod 15

a=2 2 4 8 1
a=4 4 1 4 1
a=7 7 4 13 1
a=8 8 4 2 1

a=11 11 1 11 1
a=13 13 4 7 1
a=14 14 1 14 1

Find smallest r such that a
r ⌘ 1 mod N

12/31

Period finding

In other words, the problem by now can also be phrased as finding the period of a
function.

f (x) = f (x + r)

Where
f (x) = a

x = a
x+r mod N

Find r.

13/31

What to do after quantum algorithm gives you r

I If r is odd or if a
r

2 + 1 ⌘ 0 mod N, abandon.
I There is separate theorem saying no more than a quarter of trials would have

to be tossed.

Exercise: try for a = 14.

14/31

What to do after quantum algorithm gives you r

I If r is odd or if a
r

2 + 1 ⌘ 0 mod N, abandon.
I There is separate theorem saying no more than a quarter of trials would have

to be tossed.

Exercise: try for a = 14.

Otherwise, factors are GCD(a
r

2 ± 1, N)
a=2 r=4 22 ± 1 = 4 ± 1
a=4 r=2 41 ± 1 = 4 ± 1
a=7 r=4 72 ± 1 = 49 ± 1
a=8 r=4 82 ± 1 = 64 ± 1

a=11 r=2 111 ± 1 = 11 ± 1
a=13 r=4 132 ± 1 = 169 ± 1
a=14 r=2 142 ± 1 = 196 ± 1 (bad case)

Notice why we discarded 14.

15/31

Proof why this works and why factoring is modular square root

a
r ⌘ 1 mod N

So now a
r

2 is a nontrivial square root of 1 mod N.

a
r � 1 ⌘ 0 mod N

(a
r

2 � 1)(a
r

2 + 1) ⌘ 0 mod N

The above implies that
(a

r

2 � 1)(a
r

2 + 1)
N

is an integer. So now we have to prove that

1. a
r

2 �1
N

is not an integer, and

2. a
r

2 +1
N

is not an integer.

all kn kpq
194 a 1 kpq
a hop
454 118

16/31

Proof why this works and why factoring is modular square root

Suppose a
r

2 �1
N

is an integer
that would imply

a
r

2 � 1 ⌘ 0 mod N

a
r

2 ⌘ 1 mod N

but we already defined r is the smallest such that a
r ⌘ 1 mod N, so there is a

contradiction, so a
r

2 �1
N

is not an integer.

Suppose a
r

2 +1
N

is an integer
that would imply

a
r

2 + 1 ⌘ 0 mod N

but we already eliminated such cases because we know this doesn’t give us a
useful result.

17/31

Table of contents

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

Simon’s algorithm: setting up for quantum Fourier transform

Shor’s algorithm quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation
Measurement of target (bottom, ancillary) qubit register
Quantum Fourier transform to obtain period
How to construct the Quantum Fourier transform
Evaluation of Shor’s as a fault-tolerant quantum algorithm

I Simon problem
hidden string Aperiod finding

fix fair
fix flxes E 0.1 fix f fees

t.it iiiEEii
iifiiiiiii.it iii ie iiiiiiiii.E

FYI I In t.at
f t.at É for

100m I EIEIKik.JOfix
B C

Hla t ys.EE iEIaHttYly.olfas

Cnorm
is HJly.tt
s.y

0soioy
q si

j a

111914 fly fays

yifg 1 y

any y you measures ay
O

18/31

Table of contents

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

Simon’s algorithm: setting up for quantum Fourier transform

Shor’s algorithm quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation
Measurement of target (bottom, ancillary) qubit register
Quantum Fourier transform to obtain period
How to construct the Quantum Fourier transform
Evaluation of Shor’s as a fault-tolerant quantum algorithm

19/31

The quantum part: period finding using quantum Fourier transform

I After picking a value for a, use quantum parallelism to calculate modular
exponentiation: a

x mod N for all 0  x  2n � 1 simultaneously.
I Use interference to find a global property, such as the period r.

20/31

Calculate modular exponentiation

Controlled adder (Section 4.3; Listing 2, 3)

Controlled modular multiplier (Listing 4)

Controlled modular exponentiation

Lower target register
Classical initial state

(Section 4.1)

Deallocated ancillary qubits
Classical final state

(Section 4.6)

Increasing entanglement “memory allocation” (Section 4.4) Decreasing entanglement “garbage collection” (Section 4.5)

Quantum
Fourier

transform
(Section 4.2;

Listing 1)

Inverse
quantum
Fourier

transform

Upper control register
Classical initial state

(Section 4.1)

Measurement

Classical
result

I Image source: Huang and Martonosi, Statistical assertions for validating
patterns and finding bugs in quantum programs, 2019.

I A good source on how to build the controlled adder, controlled multiplier,
and controlled exponentiation is in Beauregard, Circuit for Shor’s algorithm
using 2n+3 qubits, 2002.

1A

109 19 I
1

i

Ifly
fly a modN

21/31

Calculate modular exponentiation

I State after applying modular exponentiation circuit is

1p
2n

2n�1X

x=0

|xi |f (x)i

I Concretely, using our running example of N = 15, need n = 4 qubits to
encode, and suppose we picked a = 2, the state would be

1
4

15X

x=0

|xi |2x mod 15i

A

22/31

Measurement of target (bottom, ancillary) qubit register

I We then measure the target qubit register, collapsing it to a definite value. The
state of the upper register would then be limited to:

1p
A

A�1X

a=0

|x0 + ari

I Concretely, using our running example of N = 15, and suppose we picked
a = 2, and suppose measurement results in 2, the upper register would be a
uniform superposition of all |xi such that 2x ⌘ 2 mod 15:

|1i
2

+
|5i
2

+
|9i
2

+
|13i

2

I The key trick now is can we extract the period r = 4 from such a quantum
state. We do this using the quantum Fourier transform.

f K los is 12s 13 14s 151 167 171

flaxis is

told
to to
t.LI

Ymod S
A

Emad155

convert a series w large periodicity
r

into a series w snail periodicity p

23/31

Quantum Fourier transform to obtain period
The task now is to use Fourier transform to obtain the period.

QFT

⇣
|xi
⌘
=

1p
2n

2n�1X

y=0

e
2⇡i

2n xy |yi

QFT =
1p
2n

2

666664

1 1 1 · · · 1
1 ! !2 · · · !2n�1

1 !2 !4 · · · !2(2n�1)

...
...

...
1 !2n�1 !2(2n�1) · · · !(2n�1)(2n�1)

3

777775

Where
! = e

2⇡i

2n

And recall that
e

ix = cos x + i sin x

23.6

W
re

a I
wt.fi

QFT 2774 I wk wt

2774427T QFT fit

27T
QFT QFT Qty QFT I

Properties of Wai
N 2

to
wi.ie otk

mn i e
m

iEa.n
else

Hk H x.IE 1Isly

07TH Jan wily

é I
y

Xox i Xantry Xo2 142 Xu22 Xu12

y Yog gurgny Yo 9,2 Yu22 yn.it

idiiiiiiiiiiias

ftp.EEEI
SEtxi2 H

n yol.hn Yi XnzXu itYui XoXi.xuc

QFTH.EEde2ei y

Yo Y guy
2T 27 Koti

ly

1
19

y

1ns Be BE lyn.is

I If L

1 1 7
HER

140 9

for.pl CH's s 1
28 1 α tisas i s
Br 1

β 1ps i
8 1 1

12 12 1 3

10 171 1258
i

To
D 45 7 i

z.SE
Y _i Ht

E t E
1

040 I

Ut Ut

in sHT FI
7 His

g g 1 I

eat 1 11 I L2

I I I L
W e e eᵗ co isinE

In I

Iwi Re

iwis If

W e
sum property

Roots of unity
produceproperty

We 51 11 Edw

Ws 92 1

iffiiÉE Eiw

24/31

Quantum Fourier transform to obtain period
The task now is to use Fourier transform to obtain the period.

QFT

⇣
|xi
⌘
=

1p
2n

2n�1X

y=0

e
2⇡i

2n xy |yi

QFT

1p
A

A�1X

a=0

|x0 + ari
!

=
1p
2n

2n�1X

y=0

1p
A

A�1X

a=0

e
2⇡i

2n (x0+ar)y

!
|yi

=
2n�1X

y=0

1p
2nA

e
2⇡i

2n x0y

A�1X

a=0

e
2⇡i

2n ary

!
|yi

25/31

Quantum Fourier transform to obtain period

Prob(y) =
A

2n

�����
1
A

e
2⇡i

2n x0y

A�1X

a=0

e
2⇡i

2n ary

�����

2

=
A

2n

�����
1
A

A�1X

a=0

e
2⇡i

2n ary

�����

2

I Here, values of y such that ry

2n is close to an integer will have maximal
measurement probability.

I In our case, only ry

2n = 4·4
16 , |yi = |4i will have high measurement probability.

I To get a beautiful explanation of principle of least action, read Feynman, QED.

26/31

How to construct the Quantum Fourier transform

Figure: Credit: Wikimedia

27/31

How to construct the Quantum Fourier transform

I Cost of computing
the FFT for
functions encoded
in n bits: O(2n

n)

I Cost of quantum
Fourier transform
for functions
encoded in n
qubits: O(n2) gates.

Rk =


1 0
0 exp 2⇡i

2k

�

1.

R0 =


1 0
0 exp 2⇡i

20

�
=


1 0
0 1

�
= I

2.

R1 =


1 0
0 exp 2⇡i

21

�
=


1 0
0 �1

�
= Z

3.

R2 =


1 0
0 exp 2⇡i

22

�
=


1 0
0 i

�
= S

4.

R3 =


1 0
0 exp 2⇡i

23

�
=

"
1 0
0

p
2

2 +
p

2i

2

#
= T

N 2

ONega L
E

L

f
I
Oflogin a

28/31

Time cost and implementation

Factoring underpins cryptosystems.

For number represented as b bits:
I Classical algorithm: needs O(2

3p
b) operations. Factoring 512-bit integer: 8400

years. 1024-bit integer: 13 ⇥ 1012 years.
I Quantum algorithm: needs O(b2

log(b)) operations. Factoring 512-bit integer:
3.5 hours. 1024-bit integer: 31 hours.

Source: Oskin et al. A Practical Architecture for Reliable Quantum Computers.

29/31

Time cost and implementation

Figure: Credit: Van
Meter and Horsman.
A Blueprint for
Building a Quantum
Computer.
Communications of
the ACM. 2013.

30/31

Near-term and far-future quantum computing

Figure: Credit:
Maslov, Nam, and
Kim. An Outlook for
Quantum Computing.
Proceedings of the
IEEE. 2019.

ITB 2

2 2 2
n100 T
2100

31/31

Steps toward useful quantum computing

Figure: Credit: National Academies of Sciences,
Engineering, and Medicine. Quantum Computing:
Progress and Prospects. 2019.

