Quantum algorithms: Shor’s integer factoring quantum
part

Yipeng Huang
Rutgers University

February 23, 2024

1/31

lroy Bsagrmal .
Broblon Sela /3 /P
Pﬂ?@z‘ - PWCWM/'Z/V) aﬂv\/ @a’ajaq

Vﬂ’ &S)W‘(' z.3. Waf@{an::&,\% ”
: T

Table of contents

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

Simon’s algorithm: setting up for quantum Fourier transform

Shor’s algorithm quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation
Measurement of target (bottom, ancillary) qubit register
Quantum Fourier transform to obtain period
How to construct the Quantum Fourier transform
Evaluation of Shor’s as a fault-tolerant quantum algorithm

2/31

The factoring problem

One way functions for cryptography
1. Multiplying two b-bit numbers: on order of b* time.

3
2. Best known classical algorithm to factor a b-bit number: on order of about Vb
time.

» Makes multiplying large primes a candidate one-way function.

» [t's an open question of mathematics to prove whether one way functions
exist.

Public key cryptography
Numberphile YouTube channel explanation of RSA public key cryptography:
https://www.youtube.com/watch?v=M7kEpwltn50

3/31

https://www.youtube.com/watch?v=M7kEpw1tn50

The factoring problem

One way functions for cryptography
1. Multiplying two b-bit numbers: on order of b* time.
2. Best known classical algorithm to factor a b-bit number: on order of about o Vb
time.
Quantum integer factoring algorithm

» Quantum algorithm to factor a b-bit number: b°.
» Peter Shor, 1994.

» Important example of quantum algorithm offering exponential speedup.

4/31

Table of contents

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

Simon’s algorithm: setting up for quantum Fourier transform

Shor’s algorithm quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation
Measurement of target (bottom, ancillary) qubit register
Quantum Fourier transform to obtain period
How to construct the Quantum Fourier transform
Evaluation of Shor’s as a fault-tolerant quantum algorithm

5/31

The classical part: converting factoring to order finding / period
finding

General strategy for the classical part

1. Factoring

2. Modular square root
3. Discrete logarithm
4. Order finding

5. Period finding

The fact that a quantum algorithm can support all these primitives leads to
additional ways that future quantum computing can be useful / threatening to
existing cryptography:.

6/31

Factoring

N =pq
N=15=3x5

7/31

Modular square root

Finding the modular square root
s> mod N =1

s=+v1 modN

Trivial roots would be s = +1.
» Are there other (nontrivial) square roots?

» For N =15,s = £4, s = £11, s = £14 are all nontrivial square roots. (Show
this).

» Later in these slides, we will see how nontrivial square roots are useful for
factoring.

8/31

Discrete log

1. Pick a that is relatively prime with N.

2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm.
For example, a=6 and n=15.

Exercise: list the possible a’s for N = 15.

9/31

Discrete log

1. Pick a that is relatively prime with N.

2. Efficient to test if relatively prime by finding GCD using Euclid’s algorithm.
For example, a = 6 and n = 15.

So now our factoring problem is:
a mod N=1

ad =1 modN

In fact, this algorithm for finding discrete log even more directly attacks other
crypto primitives such as Diffie-Hellman key exchange.

10/31

Order finding

Our discrete log problem is equivalent to order finding.

al mod 15 | 42 mod 15 | 2> mod 15 | a* mod 15
a=2 | 2 4 8 1
a=4 | 4 1 4 1
a=7 | 7 4 13 1
a=8 | 8 4 2 1
a=11 | 11 1 11 1
a=13 | 13 4 7 1
a=14 | 14 1 14 1

Find smallest r such thata” =1 mod N

Period finding

In other words, the problem by now can also be phrased as finding the period of a
function.

fx) = flx+7)

Where
f(x) =a*=a""" mod N

Find 7.

12/31

What to do after quantum algorithm gives you r

» Ifrisoddorifaz +1 =0 mod N, abandon.

» There is separate theorem saying no more than a quarter of trials would have
to be tossed.

Exercise: try for a = 14.

13/31

What to do after quantum algorithm gives you r

» Ifrisodd orifaz +1=0 mod N, abandon.

» There is separate theorem saying no more than a quarter of trials would have
to be tossed.

Exercise: try for a = 14.

Otherwise, factors are GCD(az +1,N)
a=2 r=4|22+1=4+1

a=4 r=2 |414+1=44+1

a=7 r=4 | 72+1=49+1

a=8 r=4 | 8 +t1=64+1

a=11 r=2 | 11'+1=11+1

a=13 r=4 | 132+1 =169+ 1
r=2

a=14 142 +1=196+1 (bad case)
Notice why we discarded 14.

14/31

Proof why this works and why factoring is modular square root

ad =1 modN

So now a2 is a nontrivial square root of 1 mod N.
a —1=0 modN

(a2 —1)(a2+1)=0 mod N
The above implies that
(a2 —1)(az +1)
N
is an integer. So now we have to prove that

.
a2 —1
1. 22

is not an integer, and
;

2. “ZI\}L 1 isnot an integer.

15/31

Proof why this works and why factoring is modular square root

,
a2 —1
Suppose “=;

is an integer

that would imply
a2 —1=0 mod N

=1 modN

N[=

a

but we already defined r is the smallest such that 4" =1 mod N, so there is a

r
contradiction, so “ZN_ 1l isnotan integer.

a§+1
N
that would imply

Suppose is an integer

a§—|—150 mod N

but we already eliminated such cases because we know this doesn’t give us a
useful result.

16/31

Table of contents

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

Simon’s algorithm: setting up for quantum Fourier transform

Shor’s algorithm quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation
Measurement of target (bottom, ancillary) qubit register
Quantum Fourier transform to obtain period
How to construct the Quantum Fourier transform
Evaluation of Shor’s as a fault-tolerant quantum algorithm

17/31

1 Simew 6)‘@“@"\'

etV

UC()() - @’(Xf \/>
jcfx) % (xes)

@ mn

S(x) - Sles)e [onﬁ

{

ne | X 3<0 5=1
§(DS Jroy-droy 0|2 :?[0):%] ot
gj(‘) v[(()tthlj 119 ?(Utﬁo) ’
&gzi)\ Lg“u
:F(ooizg(oq \ r CF(OQ)KF(“) 0
f(ok):UC(Ofoi | :F(O\}z f(m) 1
jt(\O\Z'PUI) [A —F(m}:—@(mj 1
t?((() :]C(m k J}(H\ < 'F(W) 0
Zm-\
kLo o
W™ Zs \m @ |o>

_ Z‘ 1 {Q
S Twn)€ |\ KD @ (>>
\Y Zg&(\f \) :

Q- alo

84-0
§.q - 0(0-000 = Q@I@o=0 V/
j= ool Sy= Ot =z 08020: O v
Q- olo-o0 = VA (@0= 4 X D
gd 00-0l+ @@ 190= 4 x -\ 0g.
38 olo (0@ = QB QPI= Q) \/j (QQ
o olo- ol 0@000: 0

[0
- 010 lloe 09180 =9
old-t\« Q91890 . 19 X

oo 2
(ol .

\\o d
Y
H@l

[l

AT 1) Sy

oy g oty B0

Table of contents

The factoring problem

Shor’s algorithm classical part: converting factoring to period finding
Factoring to modular square root
Modular square root to discrete logarithm
Discrete logarithm to order finding
Order finding to period finding

Simon’s algorithm: setting up for quantum Fourier transform

Shor’s algorithm quantum part: period finding using quantum Fourier transform
Calculate modular exponentiation
Measurement of target (bottom, ancillary) qubit register
Quantum Fourier transform to obtain period
How to construct the Quantum Fourier transform
Evaluation of Shor’s as a fault-tolerant quantum algorithm

18/31

The quantum part: period finding using quantum Fourier transform

> After picking a value for 4, use quantum parallelism to calculate modular
exponentiation: #* mod N for all 0 < x < 2" — 1 simultaneously.

» Use interference to find a global property, such as the period r.

19/31

Calculate modular exponentiation A

._.v,-__.:'y
Upper control register N
Classicalinitial state
(Section 4.1) .
—>

Increasing entanglement “memory allocation” (Section 4.4)

(
(
(
— 3 ==
Quantum [7
Fourier ° ﬁ Inverse ¢ - .
Classical
transform q quantum o result
(Section 4.2; . (Fourier .
Listing 1) — @ transform |—————>| Measurement

>
Deéxreasiggentangler_n/ent\“garbage collection” (Section 4.5)

>
Lower targetregister .
Classical initial state .
(Section4.1)
[]
—_—

Controlled adder (Section 4.3; Listing 2, 3)

Controlled modular multiplier (Listing4)

Controlled modular exponentiation

\
]
— 13
o Deallocated ancillary qubits
/' Classical final state
. (Section 4.6)

» Image source: Huang and Martonosi, Statistical assertions for validating
patterns and finding bugs in quantum programs, 2019.

» A good source on how to build the controlled adder, controlled multiplier,
and controlled exponentiation is in Beauregard, Circuit for Shor’s algorithm
using 2n+3 qubits, 2002.

20/31

Calculate modular exponentiation

> State after applying modular exponentiation circuit is

» Concretely, using our running example of N = 15, need n = 4 qubits to
encode, and suppose we picked a = 2, the state would be

15

1
1 > %) [2° mod 15)
x=0

21/31

Measurement of target (bottom, ancillary) qubit register

> We then measure the target qubit register, collapsing it to a definite value. The
state of the upper register would then be limited to:

A-1

% > lxo +ar)

a=0

» Concretely, using our running example of N = 15, and suppose we picked
a = 2, and suppose measurement results in 2, the upper register would be a
uniform superposition of all |x) such that 2* =2 mod 15:

B, 19, [13)
2+2+2+2

» The key trick now is can we extract the period r = 4 from such a quantum
state. We do this using the quantum Fourier transform.

22/31

K
Mﬁ (|
. '\\ E\Q(E\J &I) [ZD KC@) (@) \D (zy {C{)JLJS Coo
\Q\vwoi[_w
i [wod (55

odity ¥

WI LQM/&Q @é«y(G‘J
0 &,/((o vl n |
ﬂ/f:: C\ S@V(M W‘ %“‘Ll I ; r

Quantum Fourier transform to obtain period

The task now is to use Fourier transform to obtain the period.

21
1 271
QFT([x)) = —= >_ ¥ |y)
V2
1 1 1 1 i
) 1 W w2 w1
2 4 2(2"—1)
QFT = 1l w w W
V2"
1 C‘}2';—1 cuz(z.“—l) o Cu(zn—l.)(z”—l)_
Where -
And recall that

e™ = cosx 4+ isinx

23/31

(26

(

|

\

(
[N W W
EEARETA

-\

IR

O -

Qr7 Q17' - T

- U U

ari Qi)™ . gt

v

QF1-aFT "« @y -ar

-{
54\,1_1
“(
)(M_;(m 2M~(
\ ><ln~7 —(yu.
\ joz X
Xu
\ [(]
| 3
2 (4
X"’w\ « jo-zz
. 2 -
e \xﬁ
%Y.
-

-1 70
W, U W 0 I,
ST Z /?V
(W L)‘; Wq B _]‘u'
U ')
["‘L - - HL\,J
W -
W R
vals
|)/ > 3 I() - [o)_ 0 [07-5(“
. (@/07-((6]) @C M < B (ﬁl}%_ﬁj)
O(D,S [‘ 0(;(l-)@\(,)
X5~ =
7 --I 2|
o vl
- @‘B}‘"

NQN ° WOWT—[H 'ii’l_iN*(q
Qe i B I I SR AR [
(7w w71 wrw ||
2 c‘ b |
Wow e w1 1l W w [10)
-) -) i 2 7
- l/\)ﬂ\)W Z o ‘
W' | = Wt Rl -0
° Y S 2 2
W+Ww \ AN 5
Wl \”‘mij ARG °

1Y/ (
1 Y T w - T
"\)q - < € T € = Ky Snz

T =
A
¢ 4 /
(W) Seand’
A

Quantum Fourier transform to obtain period
The task now is to use Fourier transform to obtain the period.

2"—1

QFT(|x) — NG Z ezzzlxl/)

1 A—1
QFT ﬁ \XQ —+ 611’>
a=0
1 2" —1 1 A—1 ,
-5 5 (Tr) v
y=0 a=0
A-1

24/31

Quantum Fourier transform to obtain period

2
1 L e Z Lary

2

Prob(y) =

'\=’|D>

A 1 — 27
- AL S
2" A gt

> Here, values of y such that 7 is close to an integer will have maximal

measurement probablhty

> In our case, only 5 = 16 , [y) = |4) will have high measurement probability.

> To get a beautiful explanation of principle of least action, read Feynman, QED.

25/31

How to construct the Quantum Fourier transform

z1) ﬂf{ (R)—Ey) 75 (10) + emiommrl 1))
E2Y; l % (‘0> 1 e2mil0.aaas] m)
3) (H)— 25 (|0) + €202l 1))

Figure: Credit: Wikimedia

26/31

How to construct the Quantum Fourier transform
I R, = 1 0
N - Z 0 exp %

» Cost of computing Ry = [1 0] — [1 O] =i
the FFT for
functions encoded

in n bits: O(2"n) = O(Nioy%{) Ry = [1 0] — [1 Ol Z/

» Cost of quantum 0 exp 3 0 -1
Fourier transform 3. /
for functions R, — [1 0] _ [1 0] .
encoded in n 0 exp % 0 1
qubits: O(1°) gates. 1 7

! 1 0 1 0 ‘
KX&?SN) R3:[0 expzz?][() ?+“§J{T

27/31

Time cost and implementation

Factoring underpins cryptosystems.
For number represented as b bits:

» Classical algorithm: needs O(Z%) operations. Factoring 512-bit integer: 8400
years. 1024-bit integer: 13 x 1012 years.

» Quantum algorithm: needs O(b*log(b)) operations. Factoring 512-bit integer:
3.5 hours. 1024-bit integer: 31 hours.

Source: Oskin et al. A Practical Architecture for Reliable Quantum Computers.

28/31

Time cost and implementation

Figure 1. Scaling the classical number field sieve (NFS) vs. Shor’s quantum algorithm for factoring.’”

The horizontal axis is the length of the number to be factored. The steep curve is NFS, with the marked point
at L = 768 requiring 3,300 CPU-years. The vertical line at L = 2048 is NIST's 2007 recommendation for RSA
key length for data intended to remain secure until 2030. The other lines are various combinations of quantum
computer logical clock speed for a three-qubit operation known as a Toffoli gate (1Hz and 1MHz), method of
implementing the arithmetic portion of Shor's algorithm (BCDP, D, and F), and quantum computer architecture
(NTC and AC, with the primary difference being whether or not long-distance operations are supported). The
assumed capacity of a machine in this graph is 2.2 logical qubits. This figure illustrates the difficulty of making
pronouncements about the speed of quantum computers.

—1 billion years Shor, 1Hz, BCDP

-1 million years

d RSA key length

-1 thousand years
—100 years
10 years

Shor, 1MHz, BCDP

Shor, 1MHz, alg. F, NTC arch.

Time to Factor an L-bit Number

—one hour

Shor, 1MHz, alg. D, AC arch.
100 seconds

one second

100 1000 10000 100000
L (bits)

Figure: Credit: Van
Meter and Horsman.
A Blueprint for
Building a Quantum
Computer.

Communications of
the ACM. 2013.

29/31

Near-term and far-future quantum computing 178 - 7™

107 ;

@ Heisenberg (NISQ)

@ Shor (NISQ) (
& Heisenberg (FT) 7
& Shor (FT)

NF (FT) e 4y %2
: 2 il ;2
> (90 7

1 Figure: Credit:
? Maslov, Nam, and
" Classical Simuladion r Kim. An Outlook for
1 Quantum Computing.
: _ ‘ ‘ 1 . Proceedings of the
1 © © Gate Erro1rO;robability o o N IEEE 2019

Fig. 2. Performance space of quantum computers, measured by the error probability of each entangling gate in the horizontal axis
(roughly inversely proportional to the total number of gates that can be executed on a NISQ machine), and the number of qubits in the
system in the vertical axis. Blue dotted line approximately demarcates quantum systems that can be simulated using best classical
computers, while the green colored region shows where the existing quantum computing systems with verified performance numbers lie

(as of September 2018). Purple shaded region indicates computational tasks that accomplish the so-called “quantum supremacy,” where the
computation carried out by the quantum computer defies classical simulation regardless of its usefulness. The different shapes illustrate
resource counts for solving various problems, with solid symbols corresponding to the exact entangling gate counts and number of qubits in
NISQ machines, and shaded regions showing approximate gate error requirements and number of qubits for an FT implementation (not
pictured are the regions where the error gets too close to the known fault-tolerance thresholds): cyan diamond and shaded region
correspond to factoring a 1024-bit number using Shor’s algorithm [14], magenta circle and shaded region represent simulation of a 72-spin
Heisenberg model [20], and orange shaded region illustrates NF simulation [21].

Number of Qubits

Quantum Supremacy

30/31

Steps toward useful quantum computing

*

Large, fault-tolerant
4 0 modular QC

MILESTONES FOR
QUANTUM COMPUTING >1000 logical qubit

QC, single module

G4

B QuANTUM ANNEALING

[GATE-BASED QUANTUM COMPUTING -

High-fidelity logical qubits
* COMMERCIALLY USEFUL QC

More qubits, better fidelity

Gate-based QC with 100’s

of qubits running QEC

Gate-based QC

Gate-based QC
with 100’s of
qubits

Quantum annealer "~ IC;,S’d (Omﬁelli‘ng ;
demonstrating M Q application
practical utility A3 <<y «

ot | Figure: Credit: National Academies of Sciences,
G3 . . o e .
meewrn Engineering, and Medicine. Quantum Computing:
il Progress and Prospects. 2019.
Scale number of qubits

while maintaining fidelity ;‘ i.‘ Improve qubit quality

Quantum annealer
demonstrating Gate-based QC demonstrating

quantum supremacy r quantum supremacy
A2 = G2a

~ Scale to 50+ qubits while
~* maintaining gate fidelity

Small (10s of qubits)
gate-based QC G1

Experimental quantum
annealer Al

CURRENTR&D FUTURER&D —

An illustration of potential milestones of progress in quan- 31/31

