Machine-Level Representation of Programs: Instruction set
architectures

Yipeng Huang
Rutgers University

March 5, 2024

1/39



Table of contents

Announcements
Quizzes and programming assignments
Reading assignments

Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2f—1 — 1?

Floats: Properties
Floating point multiplication

Computer organization: A primer

Assembly code: Human readable representation of machine code
Instruction set architectures

swap . s: Assembly implementation of function that swaps memory contents
Data size and IA32, x86, and x86-64 registers

2/39



Quizzes and programming assignments

Short quiz 5
» Due Wednesday. All about floats.

Programming assignment 3

» Due Friday.

3/39



Reading assignments

CS:APP Chapter3(3.1-3.4

4/39



Table of contents

Announcements
Quizzes and programming assignments
Reading assignments

Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2f—1 — 1?

Floats: Properties
Floating point multiplication

Computer organization: A primer

Assembly code: Human readable representation of machine code
Instruction set architectures

swap . s: Assembly implementation of function that swaps memory contents
Data size and IA32, x86, and x86-64 registers

5/39



The IEEE 754 number line

o0 ~10 -5 0 +5 +10 oo

¢ Denormalized 4 Normalized = Infinity

Figure: Full picture of number line for floating point values. Image credit CS:APP

-1 -0.8 -0.6 -0.4 -0.2 0 +0.2 +0.4 +0.6 +0.8 +1

¢ Denormalized a4 Normalized = Infinity

Figure: Zoomed in number line for floating point values. Image credit CS:APP

6/39



Floats: Summary

normalized denormalized
value of number | (—1)° x M x 2F (=1)S x M x 2F
E | E = exp-bias E =-bias +1
bias | 271 -1 211
exp | 0 <exp < (2F—1) exp =0
M | M = 1.frac M = 0.frac
M has implied leading 1 =~ M has leading 0
greater range greater precision
large magnitude numbers small magnitude numbers
denser near origin evenly spaced

Table: Summary of normalized and denormalized numbers

7/39



Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.

Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

8/39



Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.

Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

9/39



Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.

Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

Consider hypothetical &-bit floating point format (from the textbook)
1-bit sign, k = 4-bit exp, 3-bit frac.

What is the decimal value of What is the decimal value of
Obl _0110_ 1117 Ob1 0111 _000? -
-)* (1, (f, J- Z < - (52 (.u". (|,oao), 23; -|.o0d = -2.000-7

E:“Zf?-bﬁﬁs : é-[ -‘); é-(14)= _‘ z ‘&‘P-bwav —'-7 ) Za

10/39



Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.

Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

Consider hypothetical 8-bit floating point format (from the textbook)
1-bit sign, k = 4-bit exp, 3-bit frac.

What is the decimal value of What is the decimal value of
Ob1l 0110 1117 Ob1 0111 _000?
—1.875 x 21 —2.000 x 21

11/39



Deep understanding 2: Why have denormalized numbers?

Why not just continue normalized number scheme down to smallest
numbers around zero?

Answer: makes sure that smallest increments available are maintained around
Zero.

Suppose denormalized numbers NOT used.

What is the decimal What is the decimal What 1S the dec1ma1
value of ObO_QQQO_Qpl? value of 0b0_0000 111? q ‘
1125 %277 _ A 1.875 x 27
(0] 'a—h‘ 2
/ [2C - Z b (zsz (awy (652 (2

. Y L SN |/\r\1f‘\ (/\l > 9
(“)o ‘()z' (2‘3'-2 ("21 (')\l zez

12/39



Deep understanding 2: Why have denormalized numbers?

Why not just continue normalized number scheme down to smallest
numbers around zero?

Answer: makes sure that smallest increments available are maintained around
Zero.

Suppose denormalized numbers ARE used.

What is the decimal What is the decimal What is the decimal
value of Ob0_0000_001? value of ObO_0000 1117 value of O0b0_0001_0007?
0.125 x 27 0.875 x 27 1.000 x 27

13/39



Floats: Special cases

number class when it arises exp field frac field
+0 /-0 0 0
+infinity / -infinity overflow or division by 0 2k -1 0
NaN not-a-number | illegal ops. such as v/—1, inf-inf, inf*0 | 2F —1 non-0

Table: Summary of special cases

-0.0 /+D.o
N S _!_

l
L= 10
0 m _m
‘L;'(OO J_-;-0,0
00 <0

14/39



Table of contents

Announcements
Quizzes and programming assignments
Reading assignments

Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2f—1 — 1?

Floats: Properties
Floating point multiplication

Computer organization: A primer

Assembly code: Human readable representation of machine code
Instruction set architectures

swap . s: Assembly implementation of function that swaps memory contents
Data size and IA32, x86, and x86-64 registers

15/39



How to multiply scientific notation?

Recall: log(x x y) = log(x) + log(y)

16/39



Floating point multiplication

Carnegie Mellon

FP Multiplication

m (1)1 M1 2F8 x (1) M2 2F2
m Exact Result: (-1)° M 2F

= Sign s: s1/s2

= Significand M: M1 x M2

" Exponent E: El+E2
m Fixing

" |f M 2 2, shift M right, increment E
® |f E out of range, overflow
®= Round M to fit £rac precision

m Implementation
® Biggest chore is multiplying significands

Brvant and O’Hallaron, Computer Svstems: A Programmer’s Perspective, Third Edition

27

17/39



Table of contents

Announcements
Quizzes and programming assignments
Reading assignments

Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2f—1 — 1?

Floats: Properties
Floating point multiplication

Computer organization: A primer

Assembly code: Human readable representation of machine code
Instruction set architectures

swap . s: Assembly implementation of function that swaps memory contents
Data size and IA32, x86, and x86-64 registers

18/39



Computer organization

Layer cake: remember the first day of class, we discussed what are parts of

a computer?

>

Society
Human beings

Applications

R, thon

Algorithms <
High-level programming languages J WO~

Interpreters

Low-level programming languages & C

Compilers

Architectures

vV vV vV VY[(][V vV VvV VvV VY VvV <VvyYy

24

Sequential /combinational logic

Microarchitectures

Transistors

Semiconductors

fustracovn Sévf W@AWW

Wb Srivvein

19/39



Stored program computer

D

Stored program:

Instructions reside?

in memory, loaded
as needed.

von Neumann
architecture:
Data and
. (-/ .
instructions share

./ .
same connection to
memaory.

Y.

Assembly/Machine Code View

Carnegie Mellon

A\

ondltlon
\ Codes
7

Programmer V|S|ble State
= PC: Program counter

= Address of next instruction
= Called “RIP” (x86-64)
= Register file
= Heavily used program data
® Condition codes

= Store status information about most
recent arithmetic or logical operation

Bryant and O’Hallaron, Eor#gustg' yS eomlg:(}igrgggamgrrs] aelrsPerc‘ vlgthr!:fqgrion

" Memory
= Byte addressable array
= Code and user data
= Stack to support procedures

20/39



Memory hierarchy/

/
//Capacity Access speed

— Intern[%t

Tape 1

% Hard drives”
Solid state drives’

— DRAM +

Last-level cache (

Level-1 cache
Registers +

> Registers (.25;15; 4GHz =>\.25e-9s)
VYIS

21/39



Table of contents

Announcements
Quizzes and programming assignments
Reading assignments

Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2f—1 — 1?

Floats: Properties
Floating point multiplication

Computer organization: A primer

Assembly code: Human readable representation of machine code
Instruction set architectures

swap . s: Assembly implementation of function that swaps memory contents
Data size and IA32, x86, and x86-64 registers

22/39



Unraveling the compilation chain

Carnegie Mellon

Turning C into Object Code

® Codeinfiles pl.c p2.c

= Compile with command: gcc -Og pl.c p2.c -o p

= Use basic optimizations (-Og) [New to recent versions of GCC]

= Put resulting binary in file p

text

text

binary

binary

C program (pl.c p2.c)

Compiler (gcc -Og -S)

Asm program (pl.s p2.s)

Assembler (gcc or as)

Object program (pl.o0 p2.0) Static libraries

(.a)

Linker (gcc or 1d)

Executable program (p)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

13

23/39



Assembly

Human readable machine code
» Very limited
» Not much control flow
» Any more complex functionality is built up

» for loops, while loops, turn into assembly sequence

Choice of what assembly to experiment with

» MIPS
» ARM

> x86 / x86-64 (not ideal for teaching, but it allows us to experiment on ilab)

24/39



Assembly instructions

Instructions for the microarchitecture
» Binary streams that tell an electronic circuit what to do

» Fetch, decode, execute, memory, writeback

25/39



A preview of microarchitecture

Insiruction Fech | "Regisier Ftch ‘ Addrosy Cate, | Memory Access
IF ID EX MEM
Next PC
Next SEQ PC Next SEQ PC —I_-
RS1 é
RS2 Register gﬁgﬂh

File

Sign
Extend

Imm

Xd/dal

WHN / X3

il

Write Back

WB

:
T

aMm / WHIN

H

WB Data

Figure: Stages of compilation. Image credit Wikimedia

26/39



Table of contents

Announcements
Quizzes and programming assignments
Reading assignments

Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2f—1 — 1?

Floats: Properties
Floating point multiplication

Computer organization: A primer

Assembly code: Human readable representation of machine code
Instruction set architectures

swap . s: Assembly implementation of function that swaps memory contents
Data size and IA32, x86, and x86-64 registers

27/39



Why are instruction set architectures important

Interface between computer science and electrical and computer
engineering
» Software is varied, changes

» Hardware is standardized, static

Computer architect Fred Brooks and the IBM 360

» IBM was selling computers with different capacities,
» Compile once, and can run software on all IBM machines.
» Backward compatibility.

» An influential idea.

28/39



CISC vs. RISC

Complex instruction set computer

» Intel and AMD
» Have an extensive and complex set of instructions

» For example: x86’s extensions: x87, IA-32, x86-64, MMX, 3DNow!, SSE, SSE2,
SSE3, SSSE3, SSE4, SSE4.2, SSE5, AES-NI, CLMUL, RDRAND, SHA, MPX,
SGX, XOP, F16C, ADX, BMI, FMA, AVX, AVX2, AVX512, VT-x, VI-d, AMD-V,
AMD-Vi, TSX, ASF

» Can license Intel’s compilers to extract performance

> Secret: inside the processor, they break it down to more elementary
instructions

29/39



CISC vs. RISC

Reduced instruction set computer
> MIPS, ARM, RISC-V (can find Patterson and Hennessy Computer
Organization and Design textbook in each of these versions), and PowerPPC

» Have a relatively simple set of instructions

» For example: ARM’s extensions: SVE;SVE2;TME; All mandatory: Thumb-2,
Neon, VFPv4-D16, VFPv4 Obsolete: Jazelle

» ARM: smartphones, Apple ARM M1 Mac

30/39



Into the future: Post-ISA world

Post-ISA world
» Increasingly, the CPU is not the only
character
» It orchestrates among many pieces
of hardware
» Smartphone die shot

» GPU, TPU, FPGA, ASIC

Figure: Apple A13 (2019 Apple iPhone 11
CPU). Image credit AnandTech

O

=y

oA 31739



Table of contents

Announcements
Quizzes and programming assignments
Reading assignments

Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2f—1 — 1?

Floats: Properties
Floating point multiplication

Computer organization: A primer

Assembly code: Human readable representation of machine code
Instruction set architectures

swap . s: Assembly implementation of function that swaps memory contents
Data size and IA32, x86, and x86-64 registers

32/39



Unraveling the compilation chain

Carnegie Mellon

Turning C into Object Code

® Codeinfiles pl.c p2.c

® Compile with command: gcc -Og pl.c p2.c -o p

= Use basic optimizations (-Og) [New to recent versions of GCC]

= Put resulting binary in file p

text

text

binary

binary

C program (pl.c p2.c)

Compiler (gcc -Og -S)

Asm program (pl.s p2.s)

Assembler (gcc or as)

Object program (pl.o p2.0) Static libraries

(.a)

Linker (gcc ory
Executable program (p)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

13

» gcc-0g -S
swap.c
» objdump -d
swap
Let’s go to CS:APP
textbook lecture

slides (05-machine-
basics.pdf) slide 28

33/39



Data movement instructions

Does unsigned / signed matter?

1. void swap_uc

2. void swap_sc

( unsigned charxa,

(

signed charxa,

Swapping different data sizes

1.

void

2. void
3.
4

. volid

void

swap_C
swap_s
swap_ 1

swap_ 1

(
(
(
(

charxa,

short«*a,

int«*a,

longx*a,

char+b

int*b );
longxb

unsigned charxb );

signed charxb );

) ;

short*b

) ;

) ;

34/39



Table of contents

Announcements
Quizzes and programming assignments
Reading assignments

Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2f—1 — 1?

Floats: Properties
Floating point multiplication

Computer organization: A primer

Assembly code: Human readable representation of machine code
Instruction set architectures

swap . s: Assembly implementation of function that swaps memory contents
Data size and IA32, x86, and x86-64 registers

35/39



Assembly syntax
Instruction Source, Dest
swap_1:

movqg (%rsi), S%Srax
movqg (%rdi), Srdx
movqg %rdx, (%rsi)
movqg %rax, (%rdi)

ret

Data size and x86 / x86-64 registers

swap data type mov operation registers
swap_uc unsigned char movb (move byte) %al, Yodl
swap_sc signed char movb (move byte) %al, %dl
swap_c char movb (move byte)  %al, %dl
swap_s short movw (move word)  %ax, %dx
swap_i int movl Yoeax, Yoedx
swap_l long movq Yorax, Yordx

36/39



Data size and IA32, x86, and x86-64 registers

Carnegie Mellon

Some History: IA32 Registers Origin
(mostly obsolete)
$eax $ax %ah %al accumulate
o $ecx $cx $ch $cl counter
. o
data type registers g 2 adx sdx | %dh %dl data
o
- <
char  %al, %dl g %ebx sbx |  %bh b1 base
short %ax, %dx %
. Qesi %Si .?O(L;rce
int  9%eax, %edx ° index
long  %rax, Y%rdx sedi $di destination
-
k
%esp 5sP :ziﬁter
Note the backward ;
1 e ase
compatibility. %ebp #bp pointer
\ )
Y
16-bit virtual registers
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third EditignbaCkwa rds Compaﬁbility) 24

37/39



Data size and IA32, x86, and x86-64 registers

Carnegie Mellon

x86-64 Integer Registers

Srax %eax 2r8 $r8d
Srbx %ebx $r9 $r9d
data type registers $rex secx $rl0 5r10d
char %al, %dl $rdx $edx 2r1il $rild
short %ax, %dx . e ee1o e
. sl esi sr r
int 9%eax, %edx
long  %rax, Y%rdx srdi sedi $rl3 $r13d
srs sesp %rld $rldd
Note the backward P
compatibility. $rbp tebp $rl5 3r15d

® Can reference low-order 4 bytes (also low-order 1 & 2 bytes)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

38/39



Data size and IA32, x86, and x86-64 registers

zMMo  [YMMO [xMMo ]| zMM1  [YMM1 [XMM1]| | sT(0) [MMO || sT(1) [MM1 || [EEIaXEAX|RAX|[[d ] =eo] R|[EsafizoR12] [MswicRd| CR4 |
lzMm2  [YMM2 [xMM2 J[zMM3  [YMM3 [xMM3 ]| | sT(2) [MM2 | sT(3) [MM3 || [EEZBXEBX|RBX|[ =] o] Ro|EuafizoR13| | CcR1 || CRS
|zMm4  [YMM4 [XMM4 ][ ZMM5 ~ [YMM5 _[XMM5 ]| | ST(4) [MM4 | sT(5) [MM5 || [EEIcXEcX]RCX|[EdmofuooR 10|[FsmafiaoR 14| | CR2 || CR6 |
|zMmM6  [YMM6 [XMM6 ]| zMM7  [YMM7 [XMM7 ]| | sT(6) [MM6 || sT(7) [MM7 || [EEDXEDXRDX|[EfrenfrioR11 EfusfusoR15| | cR3 || cr7

lzMm8  [YMM8 [xMM8 ][ ZMM9  [YMM9 [xMM9 | [E=TerEBPRBP| [T DIEDI RDI| [IF[EIF] RIF] [ MXCSR || CRS |
[zMm10 [YmMM1i0 MMig| zMM11  [ymmi1 xmmid) | cw |[Fp_ip|[Fe_pP|Fp_cs| [ESIESI RsI| [EISPESPIRSP)
[zMM12  [YMM12 XMM1Z)[zZMM13  [YMM13 [xMM13] | Sw |
[zMM14  [YMM14 DM1d)| zMM15 [ymmis vviag) [ tw | 020M Do e W s2-bitregister [l 80 bit register [l 256-bit register
‘ZMMlGH ZMM17” ZMM18” ZMM19“ ZMMZOH ZMM21” ZMM22|| ZMMZB‘ ‘FP_DS‘ B 16-bitregister || 64-bit register || 128-bit register [J| 512-bit register
IZMM24“ ZMM25H zmmze“ ZMM27“ ZMM28H ZMM29“ ZMM30|| ZMM31| ‘FP_OPCHFP_DPH FP_|P‘ ’ Cs H SS H DS | ‘ GDTR ” IDTR ‘ ‘ DRO H DR6 ‘ |CR13‘
| Es | Fs || es || TR | LDTR || DR1 || DR7 | |cCR14]

| CR15 |

‘IDRZ | DRrs |

| DR4 | DR10|[DR12 || DR14 |
| DR5 | DR11 || DR13 | DR15 |

||| FLAGS IEFLAGS| RFLAGS

Figure: x86-64 with SIMD extensions registers. Image credit: https:
//commons.wikimedia.org/wiki/File:Table_of_ x86_Registers_svg.svg

O
0y
I
L
!

YA 39/39


https://commons.wikimedia.org/wiki/File:Table_of_x86_Registers_svg.svg
https://commons.wikimedia.org/wiki/File:Table_of_x86_Registers_svg.svg

