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Quizzes and programming assignments

Short quiz 5
I Due Wednesday. All about floats.

Programming assignment 3
I Due Friday.
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Reading assignments

CS:APP Chapters 3.1-3.4It
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The IEEE 754 number line
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Figure: Full picture of number line for floating point values. Image credit CS:APP
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Figure: Zoomed in number line for floating point values. Image credit CS:APP
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Floats: Summary

normalized denormalized

value of number (�1)s ⇥ M ⇥ 2E (�1)s ⇥ M ⇥ 2E

E E = exp-bias E = -bias + 1
bias 2k�1 � 1 2k�1 � 1
exp 0 < exp < (2k � 1) exp = 0

M M = 1.frac M = 0.frac
M has implied leading 1 M has leading 0

greater range greater precision
large magnitude numbers small magnitude numbers
denser near origin evenly spaced

Table: Summary of normalized and denormalized numbers
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Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.
Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?
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Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.
Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.
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Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.
Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

Consider hypothetical 8-bit floating point format (from the textbook)
1-bit sign, k = 4-bit exp, 3-bit frac.

What is the decimal value of
0b1_0110_111?

What is the decimal value of
0b1_0111_000?

mn

112 1.111 2 1.875 2 115 1.000 23 1.000 2.000 2

E expbias 6 2 1 6 124 E expbias 7 7 2
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Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.
Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

Consider hypothetical 8-bit floating point format (from the textbook)
1-bit sign, k = 4-bit exp, 3-bit frac.

What is the decimal value of
0b1_0110_111?
�1.875 ⇥ 2�1

What is the decimal value of
0b1_0111_000?
�2.000 ⇥ 2�1
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Deep understanding 2: Why have denormalized numbers?

Why not just continue normalized number scheme down to smallest
numbers around zero?
Answer: makes sure that smallest increments available are maintained around
zero.

Suppose denormalized numbers NOT used.

What is the decimal
value of 0b0_0000_001?
1.125 ⇥ 2�7

What is the decimal
value of 0b0_0000_111?
1.875 ⇥ 2�7

What is the decimal
value of 0b0_0001_000?
2.000 ⇥ 2�7mi n De

1 25 20
7 mine
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Deep understanding 2: Why have denormalized numbers?

Why not just continue normalized number scheme down to smallest
numbers around zero?
Answer: makes sure that smallest increments available are maintained around
zero.

Suppose denormalized numbers ARE used.

What is the decimal
value of 0b0_0000_001?
0.125 ⇥ 2�6

What is the decimal
value of 0b0_0000_111?
0.875 ⇥ 2�6

What is the decimal
value of 0b0_0001_000?
1.000 ⇥ 2�6
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Floats: Special cases

number class when it arises exp field frac field

+0 / -0 0 0
+infinity / -infinity overflow or division by 0 2k � 1 0
NaN not-a-number illegal ops. such as

p
�1, inf-inf, inf*0 2k � 1 non-0

Table: Summary of special cases

N 0

10.0 IN 0.0
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How to multiply scientific notation?

Recall: log(x ⇥ y) = log(x) + log(y)
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Floating point multiplication

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

FP Multiplication
¢ (–1)s1 M1 2E1 x   (–1)s2 M2 2E2

¢ Exact Result: (–1)s M 2E

! Sign s: s1 ^ s2
! Significand M: M1 x M2
! Exponent E: E1 + E2

¢ Fixing
! If M ≥ 2, shift M right, increment E
! If E out of range, overflow 
! Round M to fit frac precision

¢ Implementation
! Biggest chore is multiplying significands

Figure: Image credit CS:APP
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Computer organization
Layer cake: remember the first day of class, we discussed what are parts of
a computer?

I Society
I Human beings
I Applications
I Algorithms
I High-level programming languages
I Interpreters
I Low-level programming languages
I Compilers
I Architectures
I Microarchitectures
I Sequential/combinational logic
I Transistors
I Semiconductors
I Materials science
I Physics
I Mathematics

Python

Java
C

ISA instruction set architecture
abstraction
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Stored program computer

Stored program:
Instructions reside
in memory, loaded
as needed.

von Neumann
architecture:
Data and
instructions share
same connection to
memory.

Carnegie Mellon 

12 Bryant	  and	  O’Hallaron,	  Computer	  Systems:	  A	  Programmer’s	  Perspec�ve,	  Third	  Edi�on	  

CPU	  

Assembly/Machine	  Code	  View	  

Programmer-‐Visible	  State	  
§  PC:	  Program	  counter	  

§  Address	  of	  next	  instruc�on	  
§  Called	  “RIP”	  (x86-‐64)	  

§  Register	  file	  
§  Heavily	  used	  program	  data	  

§  Condi�on	  codes	  
§  Store	  status	  informa�on	  about	  most	  
recent	  arithme�c	  or	  logical	  opera�on	  

§  Used	  for	  condi�onal	  branching	  

PC	  
Registers	  

Memory	  

Code	  
Data	  
Stack	  

Addresses	  

Data	  

Instruc�ons	  Condi�on	  
Codes	  

§ Memory	  
§  Byte	  addressable	  array	  
§  Code	  and	  user	  data	  
§  Stack	  to	  support	  procedures	  

Figure: View of computer from assembly. Image credit CS:APP

I PITIE.tt7E
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Memory hierarchy

Capacity Access speed

Internet
Tape 250Pb

Hard drives 16TB 2Mb/s
Solid state drives 4TB 2Gb/s

DRAM 8Gb - 1Tb+ 8Gb/s
Last-level cache 64Mb

Level-1 cache 1Mb
Registers 1Kb

I Registers (.25ns; 4GHz => .25e-9s)

I A
ins 1

1000 4abls
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Unraveling the compilation chain

Carnegie Mellon 

13 Bryant	  and	  O’Hallaron,	  Computer	  Systems:	  A	  Programmer’s	  Perspec�ve,	  Third	  Edi�on	  

text	  

text	  

binary	  

binary	  

Compiler	  (gcc –Og -S)	  

Assembler	  (gcc	  or	  as)	  

Linker	  (gcc	  or ld)	  

C	  program	  (p1.c p2.c)	  

Asm	  program	  (p1.s p2.s)	  

Object	  program	  (p1.o p2.o)	  

Executable	  program	  (p)	  

Sta�c	  libraries	  
(.a)	  

Turning	  C	  into	  Object	  Code	  
§  Code	  in	  files	  	  p1.c p2.c�
§  Compile	  with	  command:	  	  gcc –Og p1.c p2.c -o p�

§ Use	  basic	  op�miza�ons	  (-Og)	  [New	  to	  recent	  versions	  of	  GCC]	  
§  Put	  resul�ng	  binary	  in	  file	  p	  

Figure: Stages of compilation. Image credit CS:APP
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Assembly

Human readable machine code
I Very limited
I Not much control flow
I Any more complex functionality is built up
I for loops, while loops, turn into assembly sequence

Choice of what assembly to experiment with
I MIPS
I ARM
I x86 / x86-64 (not ideal for teaching, but it allows us to experiment on ilab)
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Assembly instructions

Instructions for the microarchitecture
I Binary streams that tell an electronic circuit what to do
I Fetch, decode, execute, memory, writeback



26/39

A preview of microarchitecture

Figure: Stages of compilation. Image credit Wikimedia
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Why are instruction set architectures important

Interface between computer science and electrical and computer
engineering
I Software is varied, changes
I Hardware is standardized, static

Computer architect Fred Brooks and the IBM 360
I IBM was selling computers with different capacities,
I Compile once, and can run software on all IBM machines.
I Backward compatibility.
I An influential idea.
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CISC vs. RISC

Complex instruction set computer
I Intel and AMD
I Have an extensive and complex set of instructions
I For example: x86’s extensions: x87, IA-32, x86-64, MMX, 3DNow!, SSE, SSE2,

SSE3, SSSE3, SSE4, SSE4.2, SSE5, AES-NI, CLMUL, RDRAND, SHA, MPX,
SGX, XOP, F16C, ADX, BMI, FMA, AVX, AVX2, AVX512, VT-x, VT-d, AMD-V,
AMD-Vi, TSX, ASF

I Can license Intel’s compilers to extract performance
I Secret: inside the processor, they break it down to more elementary

instructions
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CISC vs. RISC

Reduced instruction set computer
I MIPS, ARM, RISC-V (can find Patterson and Hennessy Computer

Organization and Design textbook in each of these versions), and PowerPC
I Have a relatively simple set of instructions
I For example: ARM’s extensions: SVE;SVE2;TME; All mandatory: Thumb-2,

Neon, VFPv4-D16, VFPv4 Obsolete: Jazelle
I ARM: smartphones, Apple ARM M1 Mac
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Into the future: Post-ISA world

Post-ISA world
I Increasingly, the CPU is not the only

character
I It orchestrates among many pieces

of hardware
I Smartphone die shot
I GPU, TPU, FPGA, ASIC

Figure: Apple A13 (2019 Apple iPhone 11
CPU). Image credit AnandTech
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Unraveling the compilation chain

Carnegie Mellon 

13 Bryant	  and	  O’Hallaron,	  Computer	  Systems:	  A	  Programmer’s	  Perspec�ve,	  Third	  Edi�on	  

text	  

text	  

binary	  

binary	  

Compiler	  (gcc –Og -S)	  

Assembler	  (gcc	  or	  as)	  

Linker	  (gcc	  or ld)	  

C	  program	  (p1.c p2.c)	  

Asm	  program	  (p1.s p2.s)	  

Object	  program	  (p1.o p2.o)	  

Executable	  program	  (p)	  

Sta�c	  libraries	  
(.a)	  

Turning	  C	  into	  Object	  Code	  
§  Code	  in	  files	  	  p1.c p2.c�
§  Compile	  with	  command:	  	  gcc –Og p1.c p2.c -o p�

§ Use	  basic	  op�miza�ons	  (-Og)	  [New	  to	  recent	  versions	  of	  GCC]	  
§  Put	  resul�ng	  binary	  in	  file	  p	  

Figure: Stages of compilation. Image credit CS:APP

I gcc -0g -S
swap.c

I objdump -d
swap

Let’s go to CS:APP
textbook lecture
slides (05-machine-
basics.pdf) slide 28
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Data movement instructions

Does unsigned / signed matter?

1. void swap_uc ( unsigned char*a, unsigned char*b );

2. void swap_sc ( signed char*a, signed char*b );

Swapping different data sizes

1. void swap_c ( char*a, char*b );

2. void swap_s ( short*a, short*b );

3. void swap_i ( int*a, int*b );

4. void swap_l ( long*a, long*b );
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Data size and x86 / x86-64 registers

Assembly syntax
Instruction Source, Dest

swap_l:
movq (%rsi), %rax
movq (%rdi), %rdx
movq %rdx, (%rsi)
movq %rax, (%rdi)
ret

swap data type mov operation registers

swap_uc unsigned char movb (move byte) %al, %dl
swap_sc signed char movb (move byte) %al, %dl

swap_c char movb (move byte) %al, %dl
swap_s short movw (move word) %ax, %dx
swap_i int movl %eax, %edx
swap_l long movq %rax, %rdx
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Data size and IA32, x86, and x86-64 registers

data type registers

char %al, %dl
short %ax, %dx

int %eax, %edx
long %rax, %rdx

Note the backward
compatibility.

Carnegie Mellon 

24 Bryant	  and	  O’Hallaron,	  Computer	  Systems:	  A	  Programmer’s	  Perspec�ve,	  Third	  Edi�on	  

Some	  History:	  IA32	  Registers	  
%eax 

%ecx 

%edx 

%ebx 

%esi 

%edi 

%esp 

%ebp 

%ax 

%cx 

%dx 

%bx 

%si 

%di 

%sp 

%bp 

%ah 

%ch 

%dh 

%bh 

%al 

%cl 

%dl 

%bl 

16-‐bit	  virtual	  registers	  
(backwards	  compa�bility)	  

ge
ne
ra
l	  p
ur
po
se
	  

accumulate 

counter 

data 

base 

source  
index 

destination 
index 

stack  
pointer 
base 
pointer 

Origin	  
(mostly	  obsolete)	  

Figure: IA32 16-bit and 32-bit registers. Image credit CS:APP
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Data size and IA32, x86, and x86-64 registers

data type registers

char %al, %dl
short %ax, %dx

int %eax, %edx
long %rax, %rdx

Note the backward
compatibility.

Carnegie Mellon 

23 Bryant	  and	  O’Hallaron,	  Computer	  Systems:	  A	  Programmer’s	  Perspec�ve,	  Third	  Edi�on	  

%rsp 

x86-‐64	  Integer	  Registers	  

§  Can	  reference	  low-‐order	  4	  bytes	  (also	  low-‐order	  1	  &	  2	  bytes)	  

%eax 

%ebx 

%ecx 

%edx 

%esi 

%edi 

%esp 

%ebp 

%r8d 

%r9d 

%r10d 

%r11d 

%r12d 

%r13d 

%r14d 

%r15d 

%r8 

%r9 

%r10 

%r11 

%r12 

%r13 

%r14 

%r15 

%rax 

%rbx 

%rcx 

%rdx 

%rsi 

%rdi 

%rbp 

Figure: x86-64 registers. Image credit CS:APP
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Data size and IA32, x86, and x86-64 registers

Figure: x86-64 with SIMD extensions registers. Image credit: https:
//commons.wikimedia.org/wiki/File:Table_of_x86_Registers_svg.svg

https://commons.wikimedia.org/wiki/File:Table_of_x86_Registers_svg.svg
https://commons.wikimedia.org/wiki/File:Table_of_x86_Registers_svg.svg

