
1/39

Machine-Level Representation of Programs: Instruction set
architectures

Yipeng Huang

Rutgers University

March 5, 2024

2/39

Table of contents
Announcements

Quizzes and programming assignments
Reading assignments

Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2k�1 � 1?

Floats: Properties
Floating point multiplication

Computer organization: A primer
Assembly code: Human readable representation of machine code
Instruction set architectures
swap.s: Assembly implementation of function that swaps memory contents
Data size and IA32, x86, and x86-64 registers

3/39

Quizzes and programming assignments

Short quiz 5
I Due Wednesday. All about floats.

Programming assignment 3
I Due Friday.

4/39

Reading assignments

CS:APP Chapters 3.1-3.4It

5/39

Table of contents
Announcements

Quizzes and programming assignments
Reading assignments

Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2k�1 � 1?

Floats: Properties
Floating point multiplication

Computer organization: A primer
Assembly code: Human readable representation of machine code
Instruction set architectures
swap.s: Assembly implementation of function that swaps memory contents
Data size and IA32, x86, and x86-64 registers

6/39

The IEEE 754 number line

–∞ –10 –5 0 +5 +10 +∞

Denormalized Normalized Infinity

Figure: Full picture of number line for floating point values. Image credit CS:APP

–1 –0.8 –0.6 –0.4 –0.2 0 +0.2 +0.4 +0.6 +0.8 +1
Denormalized Normalized Infinity

+0 –0

Figure: Zoomed in number line for floating point values. Image credit CS:APP

7/39

Floats: Summary

normalized denormalized

value of number (�1)s ⇥ M ⇥ 2E (�1)s ⇥ M ⇥ 2E

E E = exp-bias E = -bias + 1
bias 2k�1 � 1 2k�1 � 1
exp 0 < exp < (2k � 1) exp = 0

M M = 1.frac M = 0.frac
M has implied leading 1 M has leading 0

greater range greater precision
large magnitude numbers small magnitude numbers
denser near origin evenly spaced

Table: Summary of normalized and denormalized numbers

8/39

Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.
Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

9/39

Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.
Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

10/39

Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.
Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

Consider hypothetical 8-bit floating point format (from the textbook)
1-bit sign, k = 4-bit exp, 3-bit frac.

What is the decimal value of
0b1_0110_111?

What is the decimal value of
0b1_0111_000?

mn

112 1.111 2 1.875 2 115 1.000 23 1.000 2.000 2

E expbias 6 2 1 6 124 E expbias 7 7 2

11/39

Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.
Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

Consider hypothetical 8-bit floating point format (from the textbook)
1-bit sign, k = 4-bit exp, 3-bit frac.

What is the decimal value of
0b1_0110_111?
�1.875 ⇥ 2�1

What is the decimal value of
0b1_0111_000?
�2.000 ⇥ 2�1

12/39

Deep understanding 2: Why have denormalized numbers?

Why not just continue normalized number scheme down to smallest
numbers around zero?
Answer: makes sure that smallest increments available are maintained around
zero.

Suppose denormalized numbers NOT used.

What is the decimal
value of 0b0_0000_001?
1.125 ⇥ 2�7

What is the decimal
value of 0b0_0000_111?
1.875 ⇥ 2�7

What is the decimal
value of 0b0_0001_000?
2.000 ⇥ 2�7mi n De

1 25 20
7 mine

13/39

Deep understanding 2: Why have denormalized numbers?

Why not just continue normalized number scheme down to smallest
numbers around zero?
Answer: makes sure that smallest increments available are maintained around
zero.

Suppose denormalized numbers ARE used.

What is the decimal
value of 0b0_0000_001?
0.125 ⇥ 2�6

What is the decimal
value of 0b0_0000_111?
0.875 ⇥ 2�6

What is the decimal
value of 0b0_0001_000?
1.000 ⇥ 2�6

14/39

Floats: Special cases

number class when it arises exp field frac field

+0 / -0 0 0
+infinity / -infinity overflow or division by 0 2k � 1 0
NaN not-a-number illegal ops. such as

p
�1, inf-inf, inf*0 2k � 1 non-0

Table: Summary of special cases

N 0

10.0 IN 0.0

15/39

Table of contents
Announcements

Quizzes and programming assignments
Reading assignments

Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2k�1 � 1?

Floats: Properties
Floating point multiplication

Computer organization: A primer
Assembly code: Human readable representation of machine code
Instruction set architectures
swap.s: Assembly implementation of function that swaps memory contents
Data size and IA32, x86, and x86-64 registers

16/39

How to multiply scientific notation?

Recall: log(x ⇥ y) = log(x) + log(y)

17/39

Floating point multiplication

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

FP Multiplication
¢ (–1)s1 M1 2E1 x (–1)s2 M2 2E2

¢ Exact Result: (–1)s M 2E

! Sign s: s1 ^ s2
! Significand M: M1 x M2
! Exponent E: E1 + E2

¢ Fixing
! If M ≥ 2, shift M right, increment E
! If E out of range, overflow
! Round M to fit frac precision

¢ Implementation
! Biggest chore is multiplying significands

Figure: Image credit CS:APP

18/39

Table of contents
Announcements

Quizzes and programming assignments
Reading assignments

Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2k�1 � 1?

Floats: Properties
Floating point multiplication

Computer organization: A primer
Assembly code: Human readable representation of machine code
Instruction set architectures
swap.s: Assembly implementation of function that swaps memory contents
Data size and IA32, x86, and x86-64 registers

19/39

Computer organization
Layer cake: remember the first day of class, we discussed what are parts of
a computer?

I Society
I Human beings
I Applications
I Algorithms
I High-level programming languages
I Interpreters
I Low-level programming languages
I Compilers
I Architectures
I Microarchitectures
I Sequential/combinational logic
I Transistors
I Semiconductors
I Materials science
I Physics
I Mathematics

Python

Java
C

ISA instruction set architecture
abstraction

20/39

Stored program computer

Stored program:
Instructions reside
in memory, loaded
as needed.

von Neumann
architecture:
Data and
instructions share
same connection to
memory.

Carnegie Mellon

12 Bryant	 and	 O’Hallaron,	 Computer	 Systems:	 A	 Programmer’s	 Perspec�ve,	 Third	 Edi�on	

CPU	

Assembly/Machine	 Code	 View	

Programmer-‐Visible	 State	
§  PC:	 Program	 counter	

§  Address	 of	 next	 instruc�on	
§  Called	 “RIP”	 (x86-‐64)	

§  Register	 file	
§  Heavily	 used	 program	 data	

§  Condi�on	 codes	
§  Store	 status	 informa�on	 about	 most	
recent	 arithme�c	 or	 logical	 opera�on	

§  Used	 for	 condi�onal	 branching	

PC	
Registers	

Memory	

Code	
Data	
Stack	

Addresses	

Data	

Instruc�ons	 Condi�on	
Codes	

§ Memory	
§  Byte	 addressable	 array	
§  Code	 and	 user	 data	
§  Stack	 to	 support	 procedures	

Figure: View of computer from assembly. Image credit CS:APP

I PITIE.tt7E

21/39

Memory hierarchy

Capacity Access speed

Internet
Tape 250Pb

Hard drives 16TB 2Mb/s
Solid state drives 4TB 2Gb/s

DRAM 8Gb - 1Tb+ 8Gb/s
Last-level cache 64Mb

Level-1 cache 1Mb
Registers 1Kb

I Registers (.25ns; 4GHz => .25e-9s)

I A
ins 1

1000 4abls

22/39

Table of contents
Announcements

Quizzes and programming assignments
Reading assignments

Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2k�1 � 1?

Floats: Properties
Floating point multiplication

Computer organization: A primer
Assembly code: Human readable representation of machine code
Instruction set architectures
swap.s: Assembly implementation of function that swaps memory contents
Data size and IA32, x86, and x86-64 registers

23/39

Unraveling the compilation chain

Carnegie Mellon

13 Bryant	 and	 O’Hallaron,	 Computer	 Systems:	 A	 Programmer’s	 Perspec�ve,	 Third	 Edi�on	

text	

text	

binary	

binary	

Compiler	 (gcc –Og -S)	

Assembler	 (gcc	 or	 as)	

Linker	 (gcc	 or ld)	

C	 program	 (p1.c p2.c)	

Asm	 program	 (p1.s p2.s)	

Object	 program	 (p1.o p2.o)	

Executable	 program	 (p)	

Sta�c	 libraries	
(.a)	

Turning	 C	 into	 Object	 Code	
§  Code	 in	 files	 	 p1.c p2.c�
§  Compile	 with	 command:	 	 gcc –Og p1.c p2.c -o p�

§ Use	 basic	 op�miza�ons	 (-Og)	 [New	 to	 recent	 versions	 of	 GCC]	
§  Put	 resul�ng	 binary	 in	 file	 p	

Figure: Stages of compilation. Image credit CS:APP

24/39

Assembly

Human readable machine code
I Very limited
I Not much control flow
I Any more complex functionality is built up
I for loops, while loops, turn into assembly sequence

Choice of what assembly to experiment with
I MIPS
I ARM
I x86 / x86-64 (not ideal for teaching, but it allows us to experiment on ilab)

25/39

Assembly instructions

Instructions for the microarchitecture
I Binary streams that tell an electronic circuit what to do
I Fetch, decode, execute, memory, writeback

26/39

A preview of microarchitecture

Figure: Stages of compilation. Image credit Wikimedia

27/39

Table of contents
Announcements

Quizzes and programming assignments
Reading assignments

Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2k�1 � 1?

Floats: Properties
Floating point multiplication

Computer organization: A primer
Assembly code: Human readable representation of machine code
Instruction set architectures
swap.s: Assembly implementation of function that swaps memory contents
Data size and IA32, x86, and x86-64 registers

28/39

Why are instruction set architectures important

Interface between computer science and electrical and computer
engineering
I Software is varied, changes
I Hardware is standardized, static

Computer architect Fred Brooks and the IBM 360
I IBM was selling computers with different capacities,
I Compile once, and can run software on all IBM machines.
I Backward compatibility.
I An influential idea.

29/39

CISC vs. RISC

Complex instruction set computer
I Intel and AMD
I Have an extensive and complex set of instructions
I For example: x86’s extensions: x87, IA-32, x86-64, MMX, 3DNow!, SSE, SSE2,

SSE3, SSSE3, SSE4, SSE4.2, SSE5, AES-NI, CLMUL, RDRAND, SHA, MPX,
SGX, XOP, F16C, ADX, BMI, FMA, AVX, AVX2, AVX512, VT-x, VT-d, AMD-V,
AMD-Vi, TSX, ASF

I Can license Intel’s compilers to extract performance
I Secret: inside the processor, they break it down to more elementary

instructions

30/39

CISC vs. RISC

Reduced instruction set computer
I MIPS, ARM, RISC-V (can find Patterson and Hennessy Computer

Organization and Design textbook in each of these versions), and PowerPC
I Have a relatively simple set of instructions
I For example: ARM’s extensions: SVE;SVE2;TME; All mandatory: Thumb-2,

Neon, VFPv4-D16, VFPv4 Obsolete: Jazelle
I ARM: smartphones, Apple ARM M1 Mac

31/39

Into the future: Post-ISA world

Post-ISA world
I Increasingly, the CPU is not the only

character
I It orchestrates among many pieces

of hardware
I Smartphone die shot
I GPU, TPU, FPGA, ASIC

Figure: Apple A13 (2019 Apple iPhone 11
CPU). Image credit AnandTech

32/39

Table of contents
Announcements

Quizzes and programming assignments
Reading assignments

Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2k�1 � 1?

Floats: Properties
Floating point multiplication

Computer organization: A primer
Assembly code: Human readable representation of machine code
Instruction set architectures
swap.s: Assembly implementation of function that swaps memory contents
Data size and IA32, x86, and x86-64 registers

33/39

Unraveling the compilation chain

Carnegie Mellon

13 Bryant	 and	 O’Hallaron,	 Computer	 Systems:	 A	 Programmer’s	 Perspec�ve,	 Third	 Edi�on	

text	

text	

binary	

binary	

Compiler	 (gcc –Og -S)	

Assembler	 (gcc	 or	 as)	

Linker	 (gcc	 or ld)	

C	 program	 (p1.c p2.c)	

Asm	 program	 (p1.s p2.s)	

Object	 program	 (p1.o p2.o)	

Executable	 program	 (p)	

Sta�c	 libraries	
(.a)	

Turning	 C	 into	 Object	 Code	
§  Code	 in	 files	 	 p1.c p2.c�
§  Compile	 with	 command:	 	 gcc –Og p1.c p2.c -o p�

§ Use	 basic	 op�miza�ons	 (-Og)	 [New	 to	 recent	 versions	 of	 GCC]	
§  Put	 resul�ng	 binary	 in	 file	 p	

Figure: Stages of compilation. Image credit CS:APP

I gcc -0g -S
swap.c

I objdump -d
swap

Let’s go to CS:APP
textbook lecture
slides (05-machine-
basics.pdf) slide 28

34/39

Data movement instructions

Does unsigned / signed matter?

1. void swap_uc (unsigned char*a, unsigned char*b);

2. void swap_sc (signed char*a, signed char*b);

Swapping different data sizes

1. void swap_c (char*a, char*b);

2. void swap_s (short*a, short*b);

3. void swap_i (int*a, int*b);

4. void swap_l (long*a, long*b);

35/39

Table of contents
Announcements

Quizzes and programming assignments
Reading assignments

Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2k�1 � 1?

Floats: Properties
Floating point multiplication

Computer organization: A primer
Assembly code: Human readable representation of machine code
Instruction set architectures
swap.s: Assembly implementation of function that swaps memory contents
Data size and IA32, x86, and x86-64 registers

36/39

Data size and x86 / x86-64 registers

Assembly syntax
Instruction Source, Dest

swap_l:
movq (%rsi), %rax
movq (%rdi), %rdx
movq %rdx, (%rsi)
movq %rax, (%rdi)
ret

swap data type mov operation registers

swap_uc unsigned char movb (move byte) %al, %dl
swap_sc signed char movb (move byte) %al, %dl

swap_c char movb (move byte) %al, %dl
swap_s short movw (move word) %ax, %dx
swap_i int movl %eax, %edx
swap_l long movq %rax, %rdx

37/39

Data size and IA32, x86, and x86-64 registers

data type registers

char %al, %dl
short %ax, %dx

int %eax, %edx
long %rax, %rdx

Note the backward
compatibility.

Carnegie Mellon

24 Bryant	 and	 O’Hallaron,	 Computer	 Systems:	 A	 Programmer’s	 Perspec�ve,	 Third	 Edi�on	

Some	 History:	 IA32	 Registers	
%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-‐bit	 virtual	 registers	
(backwards	 compa�bility)	

ge
ne
ra
l	 p
ur
po
se
	

accumulate

counter

data

base

source
index

destination
index

stack
pointer
base
pointer

Origin	
(mostly	 obsolete)	

Figure: IA32 16-bit and 32-bit registers. Image credit CS:APP

38/39

Data size and IA32, x86, and x86-64 registers

data type registers

char %al, %dl
short %ax, %dx

int %eax, %edx
long %rax, %rdx

Note the backward
compatibility.

Carnegie Mellon

23 Bryant	 and	 O’Hallaron,	 Computer	 Systems:	 A	 Programmer’s	 Perspec�ve,	 Third	 Edi�on	

%rsp

x86-‐64	 Integer	 Registers	

§  Can	 reference	 low-‐order	 4	 bytes	 (also	 low-‐order	 1	 &	 2	 bytes)	

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

Figure: x86-64 registers. Image credit CS:APP

39/39

Data size and IA32, x86, and x86-64 registers

Figure: x86-64 with SIMD extensions registers. Image credit: https:
//commons.wikimedia.org/wiki/File:Table_of_x86_Registers_svg.svg

https://commons.wikimedia.org/wiki/File:Table_of_x86_Registers_svg.svg
https://commons.wikimedia.org/wiki/File:Table_of_x86_Registers_svg.svg

