
1/27

Machine-Level Representation of Programs: Control

Yipeng Huang

Rutgers University

March 26, 2024

2/27

Table of contents
Announcements
3_leaq.s: Borrowing memory address calculation to efficiently implement
arithmetic
Comparisons and program control flow

What is control flow?
Condition codes
Comparison and set instructions

Modifying control flow via conditional branch statements
Jump instructions
Conditional branch statements

Modifying data flow via conditional move statements
Loop statements

Compiling for loops to while loops
Compiling while loops to do-while loops
Compiling do-while loops to goto statements
Compiling goto statements to assembly conditional jump instructions

Switch statements

3/27

Announcements

Class session plan

▶ Tuesday, 3/26: Control flow (conditionals, if, for, while, do loops, switch
statements) in assembly. (Book chapter 3.6). Bomblab phase_2, phase_3.

▶ Thursday, 3/28: Function calls in assembly. (Book chapter 3.7). Bomblab
phase_4.

▶ Tuesday, 4/2: Arrays and data structures in assembly. (Book chapter 3.8).
Bomblab phase_5, phase_6.

4/27

Table of contents
Announcements
3_leaq.s: Borrowing memory address calculation to efficiently implement
arithmetic
Comparisons and program control flow

What is control flow?
Condition codes
Comparison and set instructions

Modifying control flow via conditional branch statements
Jump instructions
Conditional branch statements

Modifying data flow via conditional move statements
Loop statements

Compiling for loops to while loops
Compiling while loops to do-while loops
Compiling do-while loops to goto statements
Compiling goto statements to assembly conditional jump instructions

Switch statements

5/27

3_leaq.s: Borrowing memory address calculation to efficiently
implement arithmetic

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Address Computation Instruction
¢ leaq Src, Dst
! Src is address mode expression
! Set Dst to address denoted by expression

¢ Uses
! Computing addresses without a memory reference

! E.g., translation of p = &x[i];
! Computing arithmetic expressions of the form x + k*y

! k = 1, 2, 4, or 8

¢ Example
long m12(long x)
{
return x*12;

}
leaq (%rdi,%rdi,2), %rax # t <- x+x*2
salq $2, %rax # return t<<2

Converted to ASM by compiler:

Figure: leaq for arithmetic. Image credit CS:APP

Example: 3_leaq.c

6/27

Load effective address

1 long * leaq (
2 long * ptr, long index
3) {
4 return &ptr[index+1];
5 }

1 long mulAdd (
2 long base, long index
3) {
4 return base+index*8+8;
5 }

Both C code functions above translate to
the assembly on the right.

leaq:
mulAdd:

leaq 8(%rdi,%rsi,8), %rax
ret

Explanation

▶ leaq src,dest takes the effective
address of the memory (index,
displacement) expression of src and
puts it in dest.

▶ leaq has shorter latency (takes
fewer CPU cycles) than imulq, so
GCC will use leaq whenever it can
to calculate expressions like
y + ax + b.

7/27

Table of contents
Announcements
3_leaq.s: Borrowing memory address calculation to efficiently implement
arithmetic
Comparisons and program control flow

What is control flow?
Condition codes
Comparison and set instructions

Modifying control flow via conditional branch statements
Jump instructions
Conditional branch statements

Modifying data flow via conditional move statements
Loop statements

Compiling for loops to while loops
Compiling while loops to do-while loops
Compiling do-while loops to goto statements
Compiling goto statements to assembly conditional jump instructions

Switch statements

8/27

What is control flow?

Control flow is:
▶ Change in the sequential execution of instructions.
▶ Change in the steady incrementation of the program counter / instruction

pointer (%rip register).

Control primitives in assembly build up to enable C and Java control
statements:
▶ if-else statements
▶ do-while loops
▶ while loops
▶ for loops
▶ switch statements

9/27

Condition codes

Carnegie Mellon

12 Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec�ve,	
 Third	
 Edi�on	

CPU	

Assembly/Machine	
 Code	
 View	

Programmer-­‐Visible	
 State	

§  PC:	
 Program	
 counter	

§  Address	
 of	
 next	
 instruc�on	

§  Called	
 “RIP”	
 (x86-­‐64)	

§  Register	
 file	

§  Heavily	
 used	
 program	
 data	

§  Condi�on	
 codes	

§  Store	
 status	
 informa�on	
 about	
 most	

recent	
 arithme�c	
 or	
 logical	
 opera�on	

§  Used	
 for	
 condi�onal	
 branching	

PC	

Registers	

Memory	

Code	

Data	

Stack	

Addresses	

Data	

Instruc�ons	
 Condi�on	

Codes	

§ Memory	

§  Byte	
 addressable	
 array	

§  Code	
 and	
 user	
 data	

§  Stack	
 to	
 support	
 procedures	

Figure: Assembly language view of CPU and memory. Image credit CS:APP

10/27

Condition codes

Automatically set by most arithmetic instructions.

Applicable types Condition code Name Use

Signed and unsigned ZF Zero flag The most recent operation yielded
zero.

Unsigned types CF Carry flag The most recent operation generated
a carry out of the most significant bit.
Used to detect overflow for unsigned
operations

Signed types SF Sign flag The most recent operation yielded a
negative value.

Signed types OF Overflow flag The most recent operation yielded a
two’s complement positive or nega-
tive overflow.

Table: Condition codes important for control flow

11/27

Comparison instructions

cmpq source1, source2
Performs source2 − source1, and sets the condition codes without setting any
destination register.

12/27

Test for equality

1 short equal_sl (
2 long x,
3 long y
4) {
5 return x==y;
6 }

C code function above translates to the
assembly on the right.

equal_sl:
xorl %eax, %eax
cmpq %rsi, %rdi
sete %al
ret

Explanation

▶ xorl %eax, %eax: Zeros the
32-bit register %eax.

▶ cmpq %rsi, %rdi: Calculates
%rdi −%rsi (x − y), sets condition
codes without updating any
destination register.

▶ sete %al: Sets the 8-bit %al
subset of %eax if op yielded zero.

13/27

Test if unsigned x is below unsigned y

1 short below_ul (
2 unsigned long x,
3 unsigned long y
4) {
5 return x<y;
6 }

1 short nae_ul (
2 unsigned long x,
3 unsigned long y
4) {
5 return !(x>=y);
6 }

Both C code functions above translate to
the assembly on the right.

below_ul:
nae_ul:

xorl %eax, %eax
cmpq %rsi, %rdi
setb %al
ret

Explanation

▶ xorl %eax, %eax: Zeros %eax.
▶ cmpq %rsi, %rdi: Calculates

%rdi −%rsi (x − y), sets condition
codes without updating any
destination register.

▶ setb %al: Sets %al if CF flag set
indicating unsigned overflow.

14/27

Side review: De Morgan’s laws

▶ ¬A ∧ ¬B ⇐⇒ ¬(A ∨ B)
▶ (∼ A)&(∼ B) ⇐⇒ ∼ (A|B)

15/27

Set instructions
cmp source1, source2 performs source2 − source1, sets condition codes.

Applicable types Set instruction Logical condition Intutive condition

Signed and unsigned sete / setz ZF Equal / zero
Signed and unsigned setne / setnz ∼ ZF Not equal / not zero

Unsigned setb / setnae CF Below
Unsigned setbe / setna CF|ZF Below or equal
Unsigned seta / setnbe ∼ CF& ∼ ZF Above
Unsigned setnb / setae ∼ CF Above or equal

Signed sets SF Negative
Signed setns ∼ SF Nonegative

Signed setl / setnge SF ˆ OF Less than
Signed setle / setng (SF ˆ OF)|ZF Less than or equal
Signed setg / setnle ∼ (SF ˆ OF)& ∼ ZF Greater than
Signed setge / setnl ∼ (SF ˆ OF) Greater than or equal

Table: Set instructions

16/27

Table of contents
Announcements
3_leaq.s: Borrowing memory address calculation to efficiently implement
arithmetic
Comparisons and program control flow

What is control flow?
Condition codes
Comparison and set instructions

Modifying control flow via conditional branch statements
Jump instructions
Conditional branch statements

Modifying data flow via conditional move statements
Loop statements

Compiling for loops to while loops
Compiling while loops to do-while loops
Compiling do-while loops to goto statements
Compiling goto statements to assembly conditional jump instructions

Switch statements

17/27

Jump instructions

11	

Bryant	
 and	
 O’Hallaron,	
 Computer	
 Systems:	
 A	
 Programmer’s	
 Perspec�ve,	
 Third	
 Edi�on	

Carnegie Mellon	

Jumping	

¢  jX	
 Instruc�ons	

§  Jump	
 to	
 different	
 part	
 of	
 code	
 depending	
 on	
 condi�on	
 codes	

jX	
 Condi�on	
 Descrip�on	

jmp 1 Uncondi�onal	

je ZF Equal	
 /	
 Zero	

jne ~ZF Not	
 Equal	
 /	
 Not	
 Zero	

js SF Nega�ve	

jns ~SF Nonnega�ve	

jg ~(SF^OF)&~ZF Greater	
 (Signed)	

jge ~(SF^OF) Greater	
 or	
 Equal	
 (Signed)	

jl (SF^OF) Less	
 (Signed)	

jle (SF^OF)|ZF Less	
 or	
 Equal	
 (Signed)	

ja ~CF&~ZF Above	
 (unsigned)	

jb CF Below	
 (unsigned)	

Figure: Jump instructions. Image credit CS:APP

18/27

Branch statements
1 unsigned long absdiff_ternary (
2 unsigned long x, unsigned long y){
3 return x<y ? y-x : x-y;
4 }

1 unsigned long absdiff_if_else (
2 unsigned long x, unsigned long y){
3 if (x<y) return y-x;
4 else return x-y;
5 }

1 unsigned long absdiff_goto (
2 unsigned long x, unsigned long y){
3 if (!(x<y)) goto Else;
4 return y-x;
5 Else:
6 return x-y;
7 }

All C functions above translate
(-fno-if-conversion) to assembly at right.

absdiff_if_else:
absdiff_goto:

cmpq %rsi, %rdi
jnb .ELSE
movq %rsi, %rax
subq %rdi, %rax
ret

.ELSE:
movq %rdi, %rax
subq %rsi, %rax
ret

Explanation
▶ cmpq %rsi, %rdi: Calculates

%rdi −%rsi (x − y), sets condition codes.
▶ jnb .ELSE: Sets program counter /

instruction pointer in %rip (.ELSE) if CF flag
not set indicating no unsigned overflow.

19/27

Table of contents
Announcements
3_leaq.s: Borrowing memory address calculation to efficiently implement
arithmetic
Comparisons and program control flow

What is control flow?
Condition codes
Comparison and set instructions

Modifying control flow via conditional branch statements
Jump instructions
Conditional branch statements

Modifying data flow via conditional move statements
Loop statements

Compiling for loops to while loops
Compiling while loops to do-while loops
Compiling do-while loops to goto statements
Compiling goto statements to assembly conditional jump instructions

Switch statements

20/27

Conditional move statements
1 unsigned long absdiff_ternary (
2 unsigned long x, unsigned long y){
3 return x<y ? y-x : x-y;
4 }

1 unsigned long absdiff_if_else (
2 unsigned long x, unsigned long y){
3 if (x<y) return y-x;
4 else return x-y;
5 }

1 unsigned long absdiff_goto (
2 unsigned long x, unsigned long y){
3 if (!(x<y)) goto Else;
4 return y-x;
5 Else:
6 return x-y;
7 }

All C functions above translate
(-fif-conversion or -O1) to assembly at
right.

absdiff_ternary:
absdiff_if_else:
absdiff_goto:

movq %rsi, %rdx // y
subq %rdi, %rdx // y-x
movq %rdi, %rax // x
subq %rsi, %rax // x-y
cmpq %rsi, %rdi
cmovb %rdx, %rax
ret

Explanation
▶ cmpq %rsi, %rdi: Calculates

%rdi −%rsi (x − y), sets condition codes.
▶ jnb .ELSE: Sets program counter /

instruction pointer in %rip (.ELSE) if CF flag
not set indicating no unsigned overflow.

21/27

Modifying control flow vs. data flow in deep CPU pipelines

Figure: Pipelined CPU stages. Image credit wikimedia

22/27

Table of contents
Announcements
3_leaq.s: Borrowing memory address calculation to efficiently implement
arithmetic
Comparisons and program control flow

What is control flow?
Condition codes
Comparison and set instructions

Modifying control flow via conditional branch statements
Jump instructions
Conditional branch statements

Modifying data flow via conditional move statements
Loop statements

Compiling for loops to while loops
Compiling while loops to do-while loops
Compiling do-while loops to goto statements
Compiling goto statements to assembly conditional jump instructions

Switch statements

23/27

Compiling for loops to while loops

C loop statements such as for loops, while loops, and do-while loops do not exist
in assembly. They are instead constructed from conditional jump statements.

1 unsigned long count_bits_for (
2 unsigned long number
3) {
4 unsigned long tally = 0;
5 for (
6 int shift=0; // init
7 shift<8*sizeof(unsigned long); // ←↩

test
8 shift++ // update
9) {

10 // body
11 tally += 0b1 & number>>shift;
12 }
13 return tally;
14 }

1 unsigned long count_bits_while (
2 unsigned long number
3) {
4 unsigned long tally = 0;
5 int shift=0; // init
6 while (
7 shift<8*sizeof(unsigned long) // ←↩

test
8) {
9 // body

10 tally += 0b1 & number>>shift;
11 shift++; // update
12 }
13 return tally;
14 }

24/27

Compiling while loops to do-while loops

1 unsigned long count_bits_while (
2 unsigned long number
3) {
4 unsigned long tally = 0;
5 int shift=0; // init
6 while (
7 shift<8*sizeof(unsigned long) // ←↩

test
8) {
9 // body

10 tally += 0b1 & number>>shift;
11 shift++; // update
12 }
13 return tally;
14 }

1 unsigned long count_bits_do_while (
2 unsigned long number
3) {
4 unsigned long tally = 0;
5 int shift=0; // init
6 do {
7 // body
8 tally += 0b1 & number>>shift;
9 shift++; // update

10 } while (shift<8*sizeof(unsigned long←↩
)); // test

11 return tally;
12 }

If initial iteration is guaranteed to run, then do one fewer test.

25/27

Compiling do-while loops to goto statements

1 unsigned long count_bits_do_while (
2 unsigned long number
3) {
4 unsigned long tally = 0;
5 int shift=0; // init
6 do {
7 // body
8 tally += 0b1 & number>>shift;
9 shift++; // update

10 } while (shift<8*sizeof(unsigned long←↩
)); // test

11 return tally;
12 }

1 unsigned long count_bits_goto (
2 unsigned long number
3) {
4 unsigned long tally = 0;
5 int shift=0; // init
6 LOOP:
7 // body
8 tally += 0b1 & number>>shift;
9 shift++; // update

10 if (shift<8*sizeof(unsigned long)) { ←↩
// test

11 goto LOOP;
12 }
13 return tally;
14 }

Loops get compiled into goto statements which are readily translated to assembly.

26/27

Compiling goto statements to assembly conditional jump
instructions

1 unsigned long count_bits_goto (
2 unsigned long number
3) {
4 unsigned long tally = 0;
5 int shift=0; // init
6 LOOP:
7 // body
8 tally += 0b1 & number>>shift;
9 shift++; // update

10 if (shift<8*sizeof(unsigned long)) { ←↩
// test

11 goto LOOP;
12 }
13 return tally;
14 }

All C loop statements so far translate to
assembly at right.

count_bits_for:
count_bits_while:
count_bits_do_while:
count_bits_goto:

xorl %ecx, %ecx # int shift=0; // init
xorl %eax, %eax # unsigned long tally = 0;

.LOOP:
movq %rdi, %rdx # number
shrq %cl, %rdx # number>>shift
incl %ecx # shift++; // update
andl $1, %edx. # 0b1 & number>>shift
addq %rdx, %rax # tally += 0b1 & number>>shift;
cmpl $64, %ecx # shift<8*sizeof(unsigned long)
jne .LOOP # goto LOOP;
ret # return tally;

27/27

Table of contents
Announcements
3_leaq.s: Borrowing memory address calculation to efficiently implement
arithmetic
Comparisons and program control flow

What is control flow?
Condition codes
Comparison and set instructions

Modifying control flow via conditional branch statements
Jump instructions
Conditional branch statements

Modifying data flow via conditional move statements
Loop statements

Compiling for loops to while loops
Compiling while loops to do-while loops
Compiling do-while loops to goto statements
Compiling goto statements to assembly conditional jump instructions

Switch statements

	Announcements
	3_leaq.s: Borrowing memory address calculation to efficiently implement arithmetic
	Comparisons and program control flow
	What is control flow?
	Condition codes
	Comparison and set instructions

	Modifying control flow via conditional branch statements
	Jump instructions
	Conditional branch statements

	Modifying data flow via conditional move statements
	Loop statements
	Compiling for loops to while loops
	Compiling while loops to do-while loops
	Compiling do-while loops to goto statements
	Compiling goto statements to assembly conditional jump instructions

	Switch statements

