A systems view of quantum
computer engineering

Wednesday, March 27, 2024
Rutgers University
Yipeng Huang



ggs{u/ws-

Seoum'w).

Detvithated Syetons

TV\WWZ( Tech . Cferm/w( “é/"ﬁj ey
Gy S50\ g S °4
B\SSW H/Cﬁ rw\} Sl(VMu[aé CJOC@CQ
Avchi {€Cﬁu,\/&/ q
T { A‘Yc&e’tw

YYUC? e etz

D{Btﬁ"( /g‘”jn‘ Q&O))”‘

W{ﬂ b s



Position statement for this graduate seminar

* Quantum computer engineering has become important.

* Requires computer systems expertise beyond quantum algorithms
and quantum device physics.



The role of abstractions in classical computing

What is an abstraction?

What are examples of abstractions?

Why are abstractions good and important?



The role of abstractions in classical computing

What is an abstraction?

What are examples of abstractions?

* APIs, Python, C, assembly, machine code (ISA), CPU-memory (von
Neumann), pipeline, gates, binary, discrete time evolution

Why are abstractions good and important?

Hides details so that users & programmers can be creative



The role of abstractions in classical computing

Are abstractions always good?

What are examples of deliberately breaking abstractions?



The role of abstractions in classical computing

Are abstractions always good?

What are examples of deliberately breaking abstractions?
* Python calling C binary (Breaking interpreted high level PL abstraction)

* Assembly code routines (Breaking structured programming abstraction)
* FPGAs (Breaking ISA abstraction)

 ASICs (Breaking von Neumann abstraction)



These two lectures: Broad view of open
challenges in guantum computer engineering

* A complete view of full-stack quantum
computing.

* In short, challenges are in finding and building
abstractions.

g
W
N
Y
N
Q

Color codes
Surface code

* In each layer, why we don’t or can’t have good
abstractions right now.

* Recent and rapidly developing field of

research.
Figure 1. Overview of the quantum computer system stack.

A Microarchitecture for a Superconducting
Quantum Processor. Fu et al.



All the quantum computer abstractions we
don’t yet have right now

Fault-tolerant, error-corrected quantum computers for algorithms
Programming: High level languages to aid algorithm discovery
Programming: Facilities for program correctness (debuggers, assertions)
Programming: Intermediate representations that aid analysis

Simulation: Support to validate and design next-gen quantum computers
Architecture: Standard instruction set architectures

Architecture: Memory hierarchy to store quantum data

O N O U A WD RE

Microarchitecture: Abundant and reliable quantum devices
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Microarchitecture: Abundant and reliable quantum devices



((KS. - Toc
Cer
#&?ﬁﬂ/@wﬁ ZIhy
Z/‘ 2r /&O%Wl Crd ol
MWA/’J@LW %Z’j‘:— L\\’\ dy&ﬁ%ﬂﬂ&

(///

s B
. :
. L(ncm §KX %‘;&D
Ybboc&\j ( K} UQ%M
Q[”ziff_fk St wmachiun
covn (n%«‘éﬂ\’v( /60@
Yroese 1 b

yeephed wsded,



Primitives Quantum algorithms
Entanglement | superdense coding /
protocols quantum teleportation
Quantum tree traversal
(random) graph traversal
walks satisfiability
Ising spin model
Adiabatic quantum approximate
optimization algorithm
Variational
Quantum Hamiltonian simulation -+
Eigensolver
Quantum pha.se estirr.lation
, period finding
Fourier )
order finding
Transform .
hidden subgroup problem
(QFT) .
linear algebra —_—~
Amplitud
mp.l 4 e. database search
amplification

QDB:

Yep(( o Olyeb

From Quantum Algorithms Towards Correct Quantum Programs. Huang and Martonosi.
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Shor’s integer factoring algorithm

Factoring underpins cryptosystemes.
For number represented as N bits—

Classical algorithm: needs O(2 V") operations
Factoring 512-bit integer: 8400 years. 1024-bit integer: 13*1012 years.

Quantum algorithm: needs O(N? log(N)) operations
Factoring 512-bit integer: 3.5 hours. 1024-bit integer: 31 hours.

A Practical Architecture for Reliable Quantum Computers. Oskin et al.



Figure 1. Scaling the classical number field sieve (NFS) vs. Shor's quantum algorithm for factoring.’”

The horizontal axis is the length of the number to be factored. The steep curve is NFS, with the marked point
at L = 768 requiring 3,300 CPU-years. The vertical line at L = 2048 is NIST's 2007 recommendation for RSA
key length for data intended to remain secure until 2030. The other lines are various combinations of quantum
computer logical clock speed for a three-qubit operation known as a Toffoli gate (1Hz and 1MHz), method of
implementing the arithmetic portion of Shor's algorithm (BCDP, D, and F), and quantum computer architecture
(NTC and AC, with the primary difference being whether or not long-distance operations are supported). The
assumed capacity of a machine in this graph is 2L7 logical qubits. This figure illustrates the difficulty of making
pronouncements about the speed of quantum computers.
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A Blueprint for Building a Quantum Computer. Van Meter and Horsman.
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Fig. 2. Performance space of quantum computers, measured by the error probability of each entangling gate in the horizontal axis
(roughly inversely proportional to the total number of gates that can be executed on a NISQ machine), and the number of qubits in the
system in the vertical axis. Blue dotted line approximately demarcates quantum systems that can be simulated using best classical
computers, while the green colored region shows where the existing quantum computing systems with verified performance numbers lie

(as of September 2018). Purple shaded region indicates computational tasks that accomplish the so-called “quantum supremacy,” where the
computation carried out by the quantum computer defies classical simulation regardless of its usefulness. The different shapes illustrate
resource counts for solving various problems, with solid symbols corresponding to the exact entangling gate counts and number of qubits in
NISQ machines, and shaded regions showing approximate gate error requirements and number of qubits for an FT implementation (not
pictured are the regions where the error gets too close to the known fault-tolerance thresholds): cyan diamond and shaded region
correspond to factoring a 1024-bit number using Shor’s algorithm [14], magenta circle and shaded region represent simulation of a 72-spin
Heisenberg model [20], and orange shaded region illustrates NF simulation [21].

An Outlook for Quantum Computing. Maslov et al.
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Fig. 2. Performance space of quantum computers, measured by the error probability of each entangling gate in the horizontal axis
(roughly inversely proportional to the total number of gates that can be executed on a NISQ machine), and the number of qubits in the
system in the vertical axis. Blue dotted line approximately demarcates quantum systems that can be simulated using best classical
computers, while the green colored region shows where the existing quantum computing systems with verified performance numbers lie

(as of September 2018). Purple shaded region indicates computational tasks that accomplish the so-called “quantum supremacy,” where the
computation carried out by the quantum computer defies classical simulation regardless of its usefulness. The different shapes illustrate
resource counts for solving various problems, with solid symbols corresponding to the exact entangling gate counts and number of qubits in
NISQ machines, and shaded regions showing approximate gate error requirements and number of qubits for an FT implementation (not
pictured are the regions where the error gets too close to the known fault-tolerance thresholds): cyan diamond and shaded region
correspond to factoring a 1024-bit number using Shor’s algorithm [14], magenta circle and shaded region represent simulation of a 72-spin
Heisenberg model [20], and orange shaded region illustrates NF simulation [21].
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(roughly inversely proportional to the total number of gates that can be executed on a NISQ machine), and the number of qubits in the
system in the vertical axis. Blue dotted line approximately demarcates quantum systems that can be simulated using best classical
computers, while the green colored region shows where the existing quantum computing systems with verified performance numbers lie

(as of September 2018). Purple shaded region indicates computational tasks that accomplish the so-called “quantum supremacy,” where the
computation carried out by the quantum computer defies classical simulation regardless of its usefulness. The different shapes illustrate
resource counts for solving various problems, with solid symbols corresponding to the exact entangling gate counts and number of qubits in
NISQ machines, and shaded regions showing approximate gate error requirements and number of qubits for an FT implementation (not
pictured are the regions where the error gets too close to the known fault-tolerance thresholds): cyan diamond and shaded region
correspond to factoring a 1024-bit number using Shor’s algorithm [14], magenta circle and shaded region represent simulation of a 72-spin
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An Outlook for Quantum Computing. Maslov et al.
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All the quantum computer abstractions we
don’t yet have right now

Fault-tolerant, error-corrected quantum computers for algorithms
Programming: High level languages to aid algorithm discovery
Programming: Facilities for program correctness (debuggers, assertions)
Programming: Intermediate representations that aid analysis

Simulation: Support to validate and design next-gen quantum computers
Architecture: Standard instruction set architectures

Architecture: Memory hierarchy to store quantum data
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Microarchitecture: Abundant and reliable quantum devices



Underappreciated fact:
Programming languages aid discovery of algorithms

Algorithms

Computer
science

Programs




Underappreciated fact:
Programming languages aid discovery of algorithms

https://www.geeksforgeeks.org/random-walk-implementation-python/

Take classical random walks as an example. Notice:
1. Ease of going from 1D example to 2D example (reusable code).

2. Ease of generating a visualization.
3. Code and simulation reveals properties useful for new algorithms.


https://www.geeksforgeeks.org/random-walk-implementation-python/

Underappreciated fact:
Programming languages aid discovery of algorithms

Algorithms

Computer
science

Programs




Specification of algorithm as a procedure

https://www.geeksforgeeks.org/random-walk-implementation-python/

Take classical random walks as an example. Notice:

1. Import library for random coin toss

2. Data structures for time series

3. Standard operators for increment and decrement



https://www.geeksforgeeks.org/random-walk-implementation-python/

What do we mean by high-level language?

// Create a list of strings

ArrayList<String> al = new ArraylList<String>();
al.add("Quantum");

al.add("Computing");

al.add("Programs");

al.add("Systems");

/* Collections.sort method is sorting the
elements of ArraylList in ascending order. */
Collections.sort(al);



High-level language hides all these concerns:

* Choice of sorting algorithm implementation and comparator function
on Strings

* Encoding of Strings as binary numbers

* Memory allocation and deallocation for String storage
* Execution of Java code on different ISAs

* Correctness of library implementation



* We want to get to that point with quantum programming

e Want to do things such as: initialize quantum data, perform search,
without worrying about the detailed implementation



Programmers’ time is scarce.
Classical computing resources are abundant.
Nonetheless, abstractions are expensive.

Table 1. Speedups from performance engineering a program that multiplies two 4096-by-4096 matrices. Each version represents a successive
refinement of the original Python code. “Running time" is the running time of the version. “GFLOPS" is the billions of 64-bit floating-point operations per
second that the version executes. “Absolute speedup” is time relative to Python, and “relative speedup,” which we show with an additional digit of precision,
is time relative to the preceding line. “Fraction of peak” is GFLOPS relative to the computer's peak 835 GFLOPS. See Methods for more details.

Version Implementation Running time (s) GFLOPS Absolute speedup Relative speedup ofF;:::(;: %)
2555248 0.005 L, . 0.00 .
.................................................................................................................... 237268005811001
...................................................................................................................... R o
. AU T S 366024
........................................................... T et
....................................................................................................................... i R e I () SOy s
S S RK i R ] e

"There’s plenty of room at the Top: What will drive computer performance after Moore’s law?" Leiserson et al. Science. 2020.



Programming languages aid discovery of algorithms:
s it currently true for guantum computer science?

Quantum Only ~100 known
algorithms quantum algorithms

Quantum Quantum

computer

coding :
science

Quantum
programs




Specification of quantum algorithm
as a quantum procedure

As another example, QAOA on Cirq exercise:
https://rutgers.instructure.com/courses/73314
/assignments/1017995

Quantum

algorithms

Need quantum equivalent of:
1. Partition representation Quantum
2. Edge constraints coding

3. Way to perturb partitioning

Quantum

computer
science

Gates to code that we can run.
Quantum

programs



https://rutgers.instructure.com/courses/73314/assignments/1017995
https://rutgers.instructure.com/courses/73314/assignments/1017995

Specification of quantum algorithm
as a quantum procedure

Functional quantum programming languages
(emphasis on specifying the mathematics)

' e Quantum
Microsoft Liquid algorithms
Quipper

QWIRE

Microsoft Q#

Etc.

BUEn Quantum

computer

coding :
science

Imperative quantum programming languages
(emphasis on specifying the resources)

Scaffold Quantum
Microsoft ProjectQ programs
Rigetti PyQuil

IBM Qiskit

Google Cirq

Etc.



Programming languages aid discovery of algorithms:
s it currently true for guantum computer science?

Quantum Only ~100 known
algorithms guantum algorithms

Some progress in the

SR Quantum pc.lst'two years.
i computer Qiskit Aqua
science OpenFermion-Cirq
TensorFlow Quantum
Given the
Quantum implementation for
programs Deutsch’s algorithm, is

it obvious how to
implement Deutsch-
Jozsa’s algorithm?




Table 7 Grover’s amplitude amplification subroutine in two languages, showcasing QC-specific
language syntax for reversible computation (rows 2 & 6) and controlled operations (rows 3 & 5).

Scaffold (C syntax) [13]

ProjectQ (Python syntax) [36]

int j;
gbit ancilla[n-1]; // scratch register
for(j=0; j<n-1; j++) PrepZ(ancillal[j],0);

# reflection across
# uniform superposition

// Hadamard on q

for(j=0; j<n; j++) H(ql[jl);

// Phase flip on q = 0...0 so invert q
for(j=0; j<n; j++) X(ql[jl);

with Compute(eng):
A11(H) | q
A11(X) | q

// Compute x[n-2] = q[0] and ...

CCNOT(q[1], q[0], ancilla[0]);

for(j=1; j<n-1; j++)
CCNOT(ancilla[j-11, ql[j+1], ancillaljl);

and q[n-1]

with Control(eng, q[0:-1]):

// Phase flip Z if q=00...0
cZ(ancilla[n-2], qln-11);

Z | q[-1]

// Undo the local registers
for(j=n-2; j>0; j-)

CCNOT(ancillal[j-1], ql[j+1], ancillal[jl);
CCNOT(q[1]l, ql[0], ancilla[0]);

# ProjectQ] automatically
# uncomputes control

// Restore q
for(j=0; j<n; j++) X(q[jD);
for(j=0; j<n; j++) H(q[j1);

Uncompute (eng)

QDB: From Quantum Algorithms Towards Correct Quantum Programs. Huang and Martonosi.




All the quantum computer abstractions we
don’t yet have right now

Fault-tolerant, error-corrected quantum computers for algorithms
Programming: High level languages to aid algorithm discovery
Programming: Facilities for program correctness (debuggers, assertions)
Programming: Intermediate representations that aid analysis

Simulation: Support to validate and design next-gen quantum computers
Architecture: Standard instruction set architectures

Architecture: Memory hierarchy to store quantum data
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Microarchitecture: Abundant and reliable quantum devices



—_—

+ Social
— Code reviews
— Extreme/Pair programming

* Methodological
— Design patterns
— Test-driven development
— Version control

This isn’t an either/or tradeoff... a
spectrum of methods is needed!

Even the most “formal” argument

~ Bug tracking can still have holes:
+ Did you prove the right thing?
e Tech nological * Do your assumptions match reality?
“lint” tools, static analysis « Knuth: “Beware of bugs in the above
— Fuzzers, random testing code; | have only proved it correct, not
tried it.”

¢ Mathematical
— Sound type systems
— Formal verification

- 12 /15

From: https://www.seas.upenn.edu/~cis500/current/lectures/lec01.pdf



Execution in target machine w/ facilities for validation

* Exception handling.
* Printf debugging.

* GDB breakpoints.

* Assertions.

* Etc.



* “Exception handling” (i.e., quantum error correction) is costly.
* No printf. No intermediate measurements.
e Can’t set arbitrary breakpoints.

* Few obvious assertions.



Even simple quantum programming bugs lead to non-obvious symptoms
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Even simple quantum programming bugs lead to non-obvious symptoms

q U — qQ1Cro1B1AF

Rz(ql, +angle/2); // C
CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT(qe, q1);
Rz(q0®, +angle/2); // D




Even simple quantum programming bugs lead to non-obvious symptoms

CIOT Jo l 3>
A

q U — q1<C B)\U A

Elementary single-qubit operations

CNOT(g@, ql);

CNOT(q@, ql1);




Even simple quantum programming bugs lead to non-obvious symptoms

A\ D

o { o B

QU=  q 7€ B AT

Elementary two-qubit operations

Rz(ql, +angle/2); // C
Rz(ql, -angle/2); // B
Rz(q0®, +angle/2); // D

Correct,
operation A unneeded




Even simple quantum programming bugs lead to non-obvious symptoms

RN

q U — q 1C o1 B X

Rz(ql, +angle/2); // C
CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT(qe, q1);
Rz(q0®, +angle/2); // D




Even simple quantum programming bugs lead to non-obvious symptoms

a U~ q O B[O AT

Rz(ql, +angle/2); // C
CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT(g@, ql);
Rz(q0®, +angle/2); // D

Correct,
operation A unneeded




Even simple quantum programming bugs lead to non-obvious symptoms

o

qr —

b

Rz(ql, +angle/2); // C
CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT(g@, ql);
Rz(q0®, +angle/2); // D

Correct,
operation A unneeded

CNOT(q@e, ql);

Rz(ql, -angle/2); // B
CNOT (g0, q1);

Rz(ql, +angle/2); // A
Rz(q®, +angle/2); // D

Correct,
operation C unneeded

Many ways to translate basic quantum operations to program code—many details to get right!
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Even simple quantum programming bugs lead to non-obvious symptoms

o

q; | U

q: 7

Rz(ql, +angle/2); // C
CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT(g@, ql);
Rz(q0®, +angle/2); // D

Correct,
operation A unneeded

|11> N ei*anglelll)

CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT(g@, ql);
Rz(ql, +angle/2); // A
Rz(q®, +angle/2); // D

Correct,
operation C unneeded

|11> N ei*anglelll)

Rz(ql, -angle/2);
CNOT(g@, ql);

Rz(ql, +angle/2);
CNOT(g@, ql);

Rz(gq@, +angle/2); // D

Incorrect,
angles flipped

|11> N e—i*angle|11>
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Even simple quantum programming bugs lead to non-obvious symptoms

o

q; | U
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Even simple quantum programming bugs lead to non-obvious symptoms

o

q; | U

q: 7

Rz(ql, +angle/2); // C
CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT(g@, ql);
Rz(q0®, +angle/2); // D

Correct,
operation A unneeded

|11> N ei*anglelll)

CNOT(g@, ql);
Rz(ql, -angle/2); // B
CNOT(g@, ql);
Rz(ql, +angle/2); // A
Rz(q®, +angle/2); // D

Correct,
operation C unneeded

|11> N ei*anglelll)

Rz(ql, -angle/2);
CNOT(g@, ql);

Rz(ql, +angle/2);
CNOT(g@, ql);

Rz(gq@, +angle/2); // D

Incorrect,
angles flipped
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Detailed debugging of Shor’s factorization algorithm

Control
Register

(N qubits)
0)#%

larget
Register
(N qubits)

1)

OFT

Inverse
OFT

Controlled
Function

(A

Measurement
(Classical
result)

Classical
Continued
Fractions
Algorithm

!

Result: Order
of f(x) with
high prob.

Image credit: Metodi, Faruque, and Chong, Quantum Computing for Computer Architects, 2nd Ed., p26

QDB: From Quantum Algorithms Towards Correct Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University
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Detailed debugging of Shor’s factorization algorithm

Control
Register

(N qubits)
0)27

Target
Register
(N qubits)

1)

Quantum part of algorithm

. . . .
- e e e e e e e e e e — e ——

| | (] ' 7

' | f A l Classical

I | | Inverse l l Continued
QFT | | OFT /|| Measurement > Fractions

! ! ' (Classical l Aloorithm

: : : result) : &

| | | |

| | | | ¢

I f | I

: : | |

| | Controlled | | | | Result: Or.der

" | Function | | | | of f(x) with

| | | , high prob.

) | J 'L ! J

Classical post processing

Image credit: Metodi, Faruque, and Chong, Quantum Computing for Computer Architects, 2nd Ed., p26

QDB: From Quantum Algorithms Towards Correct Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University

47



Bug type 3-B: mistake in composing gates using mirroring

Mirror image
submodules

Control ,
Register i
(N qubits) .
0N S

1)

Target )
Register '
(N qubits) .

|
_'_

Mirror image
submodules

OFT )

Inverse
OFT

N

Controlled
Function

-

N

(A

Measurement
(Classical
result)

e Continued

!
: Classical
|

Fractions
Algorithm

!
|

I
R
: < Result: Order>
: of f{x) with

| high prob.

|
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1|#include

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
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#define width 4 // number of qubits
int main () {

// initialize quantum variable to 5
gbit regl[widthl];
for ( int i=0; i<width; i++ ) {

Prepz ( reglil, (i+1)%2 ); // 0b0101
}

// precondition for QFT:
assert_classical ( reg, width, 5 );

QFT ( width, reg );

// postcondition for QFT &

// precondition for iQFT:
assert_superposition ( reg, width );

iQFT ( width, reg );

// postcondition for 1iQFT:
assert_classical ( reg, width, 5 );

3

Listing 1: Test harness for quantum Fourier transform.

Assertions on classical &
superposition states

help us decide whether
programs are correct

Testbench for quantum Fourier transform,
consisting of controlled-rotations
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#include
#define width 4 // number of qubits
int main () {

// initialize quantum variable to 5
gbit regl[widthl];
for ( int i=0; i<width; i++ ) {

Prepz ( reglil, (i+1)%2 ); // 0b0101
}

// precondition for QFT:
assert_classical ( reg, width, 5 );

QFT ( width, reg );

// postcondition for QFT &

// precondition for iQFT:
assert_superposition ( reg, width );

iQFT ( width, reg );

// postcondition for 1iQFT:
assert_classical ( reg, width, 5 );

3

Listing 1: Test harness for quantum Fourier transform.

Assertions on classical &
superposition states

help us decide whether
programs are correct

Testbench for quantum Fourier transform,
consisting of controlled-rotations

QFT and iQFT should be inverses,
but bug in controlled-rotations
would lead to flawed inversion
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#include
#define width 4 // number of qubits
int main () {

// initialize quantum variable to 5
gbit regl[widthl];
for ( int i=0; i<width; i++ ) {

Prepz ( reglil, (i+1)%2 ); // 0b0101
}

// precondition for QFT:
assert_classical ( reg, width, 5 );

QFT ( width, reg );

// postcondition for QFT &

// precondition for iQFT:
assert_superposition ( reg, width );

iQFT ( width, reg );

// postcondition for 1iQFT:
assert_classical ( reg, width, 5 );

3

Listing 1: Test harness for quantum Fourier transform.

Assertions on classical &
superposition states

help us decide whether
programs are correct

Testbench for quantum Fourier transform,
consisting of controlled-rotations

QFT and iQFT should be inverses,
but bug in controlled-rotations
would lead to flawed inversion
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#include
#define width 4 // number of qubits
int main () {

// initialize quantum variable to 5
gbit regl[widthl];
for ( int i=0; i<width; i++ ) {

Prepz ( reglil, (i+1)%2 ); // 0b0101
}

// precondition for OFT:
assert_classical ( reg, width, 5 );

QFT ( width, reg );

// postcondition for QFT &

// precondition for iQFT:
assert_superposition ( reg, width );

iQFT ( width, reg );

// postcondition for iOFT:
assert_classical ( reg, width, 5 );

Listing 1: Test harness for quantum Fourier transform.

Assertions on classical &
superposition states

help us decide whether
programs are correct

Testbench for quantum Fourier transform,
consisting of controlled-rotations

QFT and iQFT should be inverses,
but bug in controlled-rotations
would lead to flawed inversion

Flawed inversion caught in
failure of classical assertion
based on Chi-squared tests
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#include
#define width 4 // number of qubits
int main () {

3

// initialize quantum variable to 5
gbit regl[widthl];
for ( int i=0; i<width; i++ ) {

Prepz ( reglil, (i+1)%2 ); // 0b0101
}

// precondition for QFT:
assert_classical ( reg, width, 5 );
QFT ( width, reg );

// postcondition for QFT &

// precondition for iQFT:
assert_superposition ( reg, width );
iQFT ( width, reg );

// postcondition for 1iQFT:
assert_classical ( reg, width, 5 );

Listing 1: Test harness for quantum Fourier transform.

Assertions on classical &
superposition states

help us decide whether
programs are correct

Testbench for quantum Fourier transform,
consisting of controlled-rotations

QFT and iQFT should be inverses,
but bug in controlled-rotations
would lead to flawed inversion

Flawed inversion caught in
failure of classical assertion
based on Chi-squared tests



Toolchain for debugging programs with tests on measurements

Simulate /
Quantum execute on Ensemble
assembly prototype ==pp of o
code quantum measurements

computer



Quantum program bug types

1. Quantum initial values
2. Basic operations

3. Composing operations
A. lteration
B. Mirroring

4. Classical input parameters
5. Garbage collection of qubits

Defenses, debugging, and assertions

1. Preconditions
2. Subroutines / unit tests

3. Quantum specific language support
A. Numeric data types
B. Reversible computation

4. Algorithm progress assertions
5. Postconditions

A first taxonomy of quantum program bugs and defenses.



All the quantum computer abstractions we
don’t yet have right now

Fault-tolerant, error-corrected quantum computers for algorithms
Programming: High level languages to aid algorithm discovery
Programming: Facilities for program correctness (debuggers, assertions)
Programming: Intermediate representations that aid analysis

Simulation: Support to validate and design next-gen quantum computers
Architecture: Standard instruction set architectures

Architecture: Memory hierarchy to store quantum data
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Microarchitecture: Abundant and reliable quantum devices
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Benchmarking ZX Calculus Circuit Optimization
Against Qiskit Transpilation. Yeh et al.
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All the quantum computer abstractions we
don’t yet have right now

Fault-tolerant, error-corrected quantum computers for algorithms
Programming: High level languages to aid algorithm discovery
Programming: Facilities for program correctness (debuggers, assertions)
Programming: Intermediate representations that aid analysis

Simulation: Support to validate and design next-gen quantum computers
Architecture: Standard instruction set architectures

Architecture: Memory hierarchy to store quantum data
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Microarchitecture: Abundant and reliable quantum devices



Role of simulation in classical computer

engineering

* VirtualBox

* Gem>5

* Synopsys / Cadence
* Spice

@oﬁ : C/lmgéb 2

Warner Brothers Pictures



Why is simulation important?

* "Developing good classical simulations (or even attempting to and
failing) would also help clarify the quantum/classical boundary.”
—Aram Harrow

* Development and debugging of quantum algorithm implementations



Classical simulations of quantum computing
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FIG. S40. Scaling of the computational cost of XEB using SA and SFA. a, For a Schrédinger algorithm, the limitation
is RAM size, shown as vertical dashed line for the Summit supercomputer. Circles indicate full circuits with n = 12 to 43
qubits that are benchmarked in Fig. 4a of the main paper. 53 qubits would exceed the RAM of any current supercomputer,
and shown as a star. b, For the hybrid Schrédinger-Feynman algorithm, which is more memory efficient, the computation time
scales exponentially in depth. XEB on full verifiable circuits was done at depth m = 14 (circle). ¢, XEB on full supremacy
circuits is out of reach within reasonable time resources for m = 12, 14, 16 (stars), and beyond. XEB on patch and elided
supremacy circuits was done at m = 14, 16, 18, and 20.

Quantum supremacy using a programmable superconducting processor (supplement). Arute et al.



* Until we have quantum computer systems, building and testing
guantum computers will rely on classical computer systems.



All the quantum computer abstractions we
don’t yet have right now

Fault-tolerant, error-corrected quantum computers for algorithms
Programming: High level languages to aid algorithm discovery
Programming: Facilities for program correctness (debuggers, assertions)
Programming: Intermediate representations that aid analysis

Simulation: Support to validate and design next-gen quantum computers
Architecture: Standard instruction set architectures

Architecture: Memory hierarchy to store quantum data

O N O U A WD RE

Microarchitecture: Abundant and reliable quantum devices



A small set of quantum gates are universal...

CNOT
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FIG. 1. The rotation and controlled-NOT (CNOT) gates are an example of a universal quantum gate family when available
on all qubits, with explicit evolution (above) and quantum circuit block schematics (below). (a) The single-qubit rotation gate
R(6, ¢), with two continuous parameters 6 and ¢, evolves input qubit state |z) to output state |Z). (b) The CNOT (or reversible
XOR) gate on two qubits evolves two (control and target) input qubit states |x¢) and |zr) to output states |Zc = z¢) and
|Zr = xc ® 1), where @ is addition modulo 2, or equivalently the XOR operation.

Quantum Computer Systems for Scientific Discovery. Alexeev et al.



..but those universal gates decompose
various ways...

]qo) ——

lg) ——

_

A logical controlled-NOT,

or CNOT, gate is an en-
tangling operation that
flips the target qubit be-
tween 1 and 0 if the con-
trol qubit is in the 1 state.
It must be decomposed

I3y —-—<Rx(n) RX )
19 — Ry —1 2 — R [
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into a sequence of native
quantum gates for the qubit technology
to perform the gate operation on the
specific qubit system. Two possible de-

formance simulation could provide met-
rics to help choose which CNOT to incor-
porate into the specific design.

to choose only one to implement the log-
ical CNOT in the system. Depending on
the performance of the qubits available

compositions are shown, where RX, RY,
and RZ denote rotations around the x-, y-
and z-axes, respectively. A system per-

Depending on the fidelity of the sin-
gle- and two-qubit gates in the circuits
and on their speed, researchers may want

A systems perspective of quantum computing. Matsuura et al.

at a particular point in the execution of
the algorithm, it is also possible to choose
a different logical CNOT sequence.



..and different guantum hardware support
different gates.

Software
Visible
Gates

Native
Gates

2Q
Ry (6, 9) XX(x)
R,(A)
1Q
Ryy(6, ) XX (x)
R,(A) Ising interaction

Yb*lon trapped in EM field

1Q pie}
U, (1) CNOT constructed
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Junction

University of Maryland
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Rigetti

Figure 1. Hardware gubit technology, native gate set, and software-visible gate set in
the systems used in our study. Each qubit technology lends itself to a set of native gates.
For programming, vendors expose these gates in a software-visible interface or construct
composite gates with multiple native gates.

Architecting Noisy Intermediate-Scale Quantum Computers: A Real-System Study. Murali et al.
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ibmgx Yorktown, Tenerife

Austin, Tokyo Poughkeepsie, Johannesburg Boeblingen

Fig. 1. Examples of several IBM cloud accessible devices. The top left 5-
qubit device was the first one made available via the IBM Quantum Experience
[40]. The one to the right of it was made available after including additional
entangling gates between two pairs of qubits. A 16-qubit device was made
available approximately a year after the first device. The devices in the bottom
row show three variations of 20-qubit devices available to members of the
IBM Q Network [41].

Challenges and Opportunities of Near-Term Quantum
Computing Systems. Corcoles et al.



Compiling guantum program abstractions to
optimal quantum execution

Compilation for maximum correctness, while respecting constraints:
* variable qubit, operation, measurement reliability

* connectivity constraints

* parallelism

Will be topic of chapter on “extracting success.”
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CNOT Error Distributions

Melbourne (14Q)

Tokyo (20Q, QV=8)

Poughkeepsie (20Q, QV=8)

Johannesburg (20Q, QV=16)

Boeblingen (20Q, QV=16)

0 1 5 10 20
Gate Error (%)

Fig. 2. Controlled-NOT (CNOT) gate error distributions for a variety of IBM
devices. Beginning with the earlier devices (top rows), the average error rates
remained quite large but have improved with continuing research. The bottom
row represents the device shown in Fig. 4. The error reductions are the result
of improved gate fidelities and increasing coherence times [44], [45], as well
as a better understanding of spectator qubit errors.

Challenges and Opportunities of Near-Term Quantum
Computing Systems. Corcoles et al.



Number of physical qubits
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FIGURE 7.2 The number of qubits in superconductor (SC) and trapped ion (TI) quantum computers
versus year; note the logarithmic scaling of the vertical axis. Data for trapped ions are shown as squares
and for superconducting machines are shown as circles. Approximate average reported two-qubit gate
error rates are indicated by color; points with the same color have similar error rates. The dashed gray
lines show how the number of qubits would grow if they double every two years starting with one qubit in
2000 and 2009, respectively; the dashed black line indicates a doubling every year beginning with one
qubit in 2014. Recent superconductor growth has been close to doubling every year. If this rate continued,
50 qubit machines with less than 5 percent error rates would be reported in 2019. SOURCE: Plotted data
obtained from multiple sources [9].

Quantum Computing Progress and Prospects. National Academies Press.
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FIGURE 7.2 The number of qubits in superconductor (SC) and trapped ion (TI) quantum computers
versus year; note the logarithmic scaling of the vertical axis. Data for trapped ions are shown as squares
and for superconducting machines are shown as circles. Approximate average reported two-qubit gate
error rates are indicated by color; points with the same color have similar error rates. The dashed gray
lines show how the number of qubits would grow if they double every two years starting with one qubit in
2000 and 2009, respectively; the dashed black line indicates a doubling every year beginning with one
qubit in 2014. Recent superconductor growth has been close to doubling every year. If this rate continued,
50 qubit machines with less than 5 percent error rates would be reported in 2019. SOURCE: Plotted data
obtained from multiple sources [9].

Quantum Computing Progress and Prospects. National Academies Press.
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Moore’s Law — The number of transistors on integrated circuit chips (1971-2018) rWorld
B R A o . . . . - b ) i ) Data
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
linked to Moore's law.
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Data source: Wikipedia (nttps://en.wikipedia.org/wiki/Transistor_count)

The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic. Licensed under CC-BY-SA by the author Max Roser.
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Position statement for this graduate seminar

* Quantum computer engineering has become important.

* Requires computer systems expertise beyond quantum algorithms
and quantum device physics.



