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Position statement for this graduate seminar

• Quantum computer engineering has become important.

• Requires computer systems expertise beyond quantum algorithms 
and quantum device physics.



The role of abstractions in classical computing
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What are examples of abstractions?

Why are abstractions good and important?



The role of abstractions in classical computing

What is an abstraction? 

What are examples of abstractions?
• APIs, Python, C, assembly, machine code (ISA), CPU-memory (von 

Neumann), pipeline, gates, binary, discrete time evolution

Why are abstractions good and important?
Hides details so that users & programmers can be creative
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The role of abstractions in classical computing

Are abstractions always good?

What are examples of deliberately breaking abstractions?
• Python calling C binary (Breaking interpreted high level PL abstraction)
• Assembly code routines (Breaking structured programming abstraction)
• FPGAs (Breaking ISA abstraction)
• ASICs (Breaking von Neumann abstraction)



These two lectures: Broad view of open 
challenges in quantum computer engineering

• A complete view of full-stack quantum 
computing.

• In short, challenges are in finding and building 
abstractions.

• In each layer, why we don’t or can’t have good 
abstractions right now.

• Recent and rapidly developing field of 
research.

A Microarchitecture for a Superconducting
Quantum Processor. Fu et al.



All the quantum computer abstractions we 
don’t yet have right now
1. Fault-tolerant, error-corrected quantum computers for algorithms
2. Programming: High level languages to aid algorithm discovery
3. Programming: Facilities for program correctness (debuggers, assertions)
4. Programming: Intermediate representations that aid analysis
5. Simulation: Support to validate and design next-gen quantum computers
6. Architecture: Standard instruction set architectures
7. Architecture: Memory hierarchy to store quantum data
8. Microarchitecture: Abundant and reliable quantum devices
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QDB: From Quantum Algorithms Towards Correct Quantum Programs. Huang and Martonosi.
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QDB: From Quantum Algorithms Towards Correct Quantum Programs. Huang and Martonosi.

Fault tolerant, 
error corrected 
quantum 
algorithms

Noisy, 
intermediate-
scale quantum 
algorithms



Shor’s integer factoring algorithm 

Factoring underpins cryptosystems.
For number represented as N bits—

Classical algorithm: needs !(#! !) operations
Factoring 512-bit integer: 8400 years. 1024-bit integer: 13*1012 years.

Quantum algorithm: needs !(%" &'( % ) operations
Factoring 512-bit integer: 3.5 hours. 1024-bit integer: 31 hours.

A Practical Architecture for Reliable Quantum Computers. Oskin et al.



A Blueprint for Building a Quantum Computer. Van Meter and Horsman.



An Outlook for Quantum Computing. Maslov et al.



An Outlook for Quantum Computing. Maslov et al.

How to factor 2048 bit RSA 
integers in 8 hours using 20 
million noisy qubits. Gidney 
and Ekerå. 2019.



An Outlook for Quantum Computing. Maslov et al.

Need applications to 
motivate further 
research.



QDB: From Quantum Algorithms Towards Correct Quantum Programs. Huang and Martonosi.

Fault tolerant, 
error corrected 
quantum 
algorithms

Noisy, 
intermediate-
scale quantum 
algorithms



All the quantum computer abstractions we 
don’t yet have right now
1. Fault-tolerant, error-corrected quantum computers for algorithms
2. Programming: High level languages to aid algorithm discovery
3. Programming: Facilities for program correctness (debuggers, assertions)
4. Programming: Intermediate representations that aid analysis
5. Simulation: Support to validate and design next-gen quantum computers
6. Architecture: Standard instruction set architectures
7. Architecture: Memory hierarchy to store quantum data
8. Microarchitecture: Abundant and reliable quantum devices



Underappreciated fact:
Programming languages aid discovery of algorithms

Algorithms

Coding

Programs

Computer 
science



Underappreciated fact:
Programming languages aid discovery of algorithms
https://www.geeksforgeeks.org/random-walk-implementation-python/

Take classical random walks as an example. Notice:
1. Ease of going from 1D example to 2D example (reusable code).
2. Ease of generating a visualization.
3. Code and simulation reveals properties useful for new algorithms.

https://www.geeksforgeeks.org/random-walk-implementation-python/
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Specification of algorithm as a procedure

https://www.geeksforgeeks.org/random-walk-implementation-python/

Take classical random walks as an example. Notice:
1. Import library for random coin toss
2. Data structures for time series
3. Standard operators for increment and decrement

https://www.geeksforgeeks.org/random-walk-implementation-python/


What do we mean by high-level language?

// Create a list of strings 
ArrayList<String> al = new ArrayList<String>(); 
al.add("Quantum"); 
al.add("Computing"); 
al.add("Programs"); 
al.add("Systems"); 

/* Collections.sort method is sorting the 
elements of ArrayList in ascending order. */
Collections.sort(al); 



High-level language hides all these concerns:

• Choice of sorting algorithm implementation and comparator function 
on Strings
• Encoding of Strings as binary numbers
• Memory allocation and deallocation for String storage
• Execution of Java code on different ISAs
• Correctness of library implementation
• …



• We want to get to that point with quantum programming

• Want to do things such as: initialize quantum data, perform search, 
without worrying about the detailed implementation



Programmers’ time is scarce.
Classical computing resources are abundant. 
Nonetheless, abstractions are expensive.

"There’s plenty of room at the Top: What will drive computer performance after Moore’s law?" Leiserson et al. Science. 2020.



Programming languages aid discovery of algorithms:
Is it currently true for quantum computer science?

Quantum 
algorithms

Quantum 
coding

Quantum 
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Quantum 
computer 
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Only ~100 known 
quantum algorithms



Specification of quantum algorithm
as a quantum procedure

Quantum 
algorithms

Quantum 
coding

Quantum 
programs

Quantum 
computer 

science

As another example, QAOA on Cirq exercise:
https://rutgers.instructure.com/courses/73314
/assignments/1017995

Gates to code that we can run.

Need quantum equivalent of:
1. Partition representation
2. Edge constraints
3. Way to perturb partitioning

https://rutgers.instructure.com/courses/73314/assignments/1017995
https://rutgers.instructure.com/courses/73314/assignments/1017995


Specification of quantum algorithm
as a quantum procedure

Quantum 
algorithms

Quantum 
coding

Quantum 
programs

Quantum 
computer 

science

Functional quantum programming languages
(emphasis on specifying the mathematics)
Microsoft Liquid
Quipper
QWIRE
Microsoft Q#
Etc.

Imperative quantum programming languages
(emphasis on specifying the resources)
Scaffold
Microsoft ProjectQ
Rigetti PyQuil
IBM Qiskit
Google Cirq
Etc.



Programming languages aid discovery of algorithms:
Is it currently true for quantum computer science?

Quantum 
algorithms

Quantum 
coding

Quantum 
programs

Quantum 
computer 

science

Only ~100 known 
quantum algorithms

Some progress in the 
past two years.
Qiskit Aqua
OpenFermion-Cirq
TensorFlow Quantum

Given the 
implementation for 
Deutsch’s algorithm, is 
it obvious how to 
implement Deutsch-
Jozsa’s algorithm?



QDB: From Quantum Algorithms Towards Correct Quantum Programs. Huang and Martonosi.
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From: https://www.seas.upenn.edu/~cis500/current/lectures/lec01.pdf 



Execution in target machine w/ facilities for validation

• Exception handling.
• Printf debugging.
• GDB breakpoints.
• Assertions.
• Etc.



• “Exception handling” (i.e., quantum error correction) is costly.
• No printf. No intermediate measurements.
• Can’t set arbitrary breakpoints.
• Few obvious assertions.



Even simple quantum programming bugs lead to non-obvious symptoms
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Elementary single-qubit operations

Even simple quantum programming bugs lead to non-obvious symptoms
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Elementary two-qubit operations
Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Even simple quantum programming bugs lead to non-obvious symptoms



Unneeded
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Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Even simple quantum programming bugs lead to non-obvious symptoms



Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q1, +angle/2); // A
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Correct,
operation C unneeded

Unneeded
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Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q1, +angle/2); // A
Rz(q0, +angle/2); // D

Rz(q1, -angle/2); 
CNOT(q0, q1);
Rz(q1, +angle/2); 
CNOT(q0, q1);
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Correct,
operation C unneeded

Incorrect,
angles flipped

Unneeded?
But signs on angles wrong!
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Many ways to translate basic quantum operations to program code—many details to get right!

Even simple quantum programming bugs lead to non-obvious symptoms
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QDB: From Quantum Algorithms Towards Correct Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 46

Detailed debugging of Shor’s factorization algorithm

Image credit: Metodi, Faruque, and Chong, Quantum Computing for Computer Architects, 2nd Ed., p26

FEE



QDB: From Quantum Algorithms Towards Correct Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 47

Detailed debugging of Shor’s factorization algorithm

Image credit: Metodi, Faruque, and Chong, Quantum Computing for Computer Architects, 2nd Ed., p26

Quantum part of algorithm Classical post processing



48

Bug type 3-B: mistake in composing gates using mirroring
Mirror image
submodules

Mirror image
submodules
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Assertions on classical & 
superposition states
help us decide whether
programs are correct

Testbench for quantum Fourier transform,
consisting of controlled-rotations

QFT and iQFT should be inverses,
but bug in controlled-rotations
would lead to flawed inversion

Flawed inversion caught in
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Toolchain for debugging programs with tests on measurements

Breakpoint 
annotations

Quantum 
assembly

code

Simulate / 
execute on 
prototype 
quantum 
computer

Ensemble
of

measurements

Statistical test:
Is there
a bug?

Assertion 
annotations



QDB: From Quantum Algorithms Towards Correct Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 55

Quantum program bug types

1. Quantum initial values
2. Basic operations
3. Composing operations

A. Iteration
B. Mirroring

4. Classical input parameters
5. Garbage collection of qubits

Defenses, debugging, and assertions

1. Preconditions
2. Subroutines / unit tests
3. Quantum specific language support

A. Numeric data types
B. Reversible computation

4. Algorithm progress assertions
5. Postconditions

A first taxonomy of quantum program bugs and defenses.



All the quantum computer abstractions we 
don’t yet have right now
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Benchmarking ZX Calculus Circuit Optimization 
Against Qiskit Transpilation. Yeh et al.
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Role of simulation in classical computer 
engineering

• VirtualBox
• Gem5
• Synopsys / Cadence
• Spice

Warner Brothers PicturesRos Gazebo



Why is simulation important?

• "Developing good classical simulations (or even attempting to and 
failing) would also help clarify the quantum/classical boundary.”
—Aram Harrow

• Development and debugging of quantum algorithm implementations



Classical simulations of quantum computing

Quantum supremacy using a programmable superconducting processor (supplement). Arute et al.



• Until we have quantum computer systems, building and testing 
quantum computers will rely on classical computer systems.
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don’t yet have right now
1. Fault-tolerant, error-corrected quantum computers for algorithms
2. Programming: High level languages to aid algorithm discovery
3. Programming: Facilities for program correctness (debuggers, assertions)
4. Programming: Intermediate representations that aid analysis
5. Simulation: Support to validate and design next-gen quantum computers
6. Architecture: Standard instruction set architectures
7. Architecture: Memory hierarchy to store quantum data
8. Microarchitecture: Abundant and reliable quantum devices



A small set of quantum gates are universal…

Quantum Computer Systems for Scientific Discovery. Alexeev et al.



…but those universal gates decompose 
various ways…

A systems perspective of quantum computing. Matsuura et al.



…and different quantum hardware support 
different gates.

Architecting Noisy Intermediate-Scale Quantum Computers: A Real-System Study. Murali et al.



All the quantum computer abstractions we 
don’t yet have right now
1. Fault-tolerant, error-corrected quantum computers for algorithms
2. Programming: High level languages to aid algorithm discovery
3. Programming: Facilities for program correctness (debuggers, assertions)
4. Programming: Intermediate representations that aid analysis
5. Simulation: Support to validate and design next-gen quantum computers
6. Architecture: Standard instruction set architectures
7. Architecture: Memory hierarchy to store quantum data
8. Microarchitecture: Abundant and reliable quantum devices



Challenges and Opportunities of Near-Term Quantum 
Computing Systems. Corcoles et al.



Compiling quantum program abstractions to 
optimal quantum execution

Compilation for maximum correctness, while respecting constraints:
• variable qubit, operation, measurement reliability
• connectivity constraints
• parallelism

Will be topic of chapter on “extracting success.”
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Challenges and Opportunities of Near-Term Quantum 
Computing Systems. Corcoles et al.



Quantum Computing Progress and Prospects. National Academies Press.



Quantum Computing Progress and Prospects. National Academies Press.
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Intel Computer History Museum



Intel

Wikipedia



Position statement for this graduate seminar

• Quantum computer engineering has become important.

• Requires computer systems expertise beyond quantum algorithms 
and quantum device physics.


