
A systems view of quantum
computer engineering

Wednesday, March 27, 2024
Rutgers University

Yipeng Huang

Systems

Security
Distributed Systems

FormallaryngesInternet Tech
languages

Operating Systems
Compilers e.g

Systems Programy Simulate Google
Architecture Cira
Instructionset Archetime
microArchiecture

Digital logic design

multi qubit systems

Position statement for this graduate seminar

• Quantum computer engineering has become important.

• Requires computer systems expertise beyond quantum algorithms
and quantum device physics.

The role of abstractions in classical computing

What is an abstraction?

What are examples of abstractions?

Why are abstractions good and important?

The role of abstractions in classical computing

What is an abstraction?

What are examples of abstractions?
• APIs, Python, C, assembly, machine code (ISA), CPU-memory (von

Neumann), pipeline, gates, binary, discrete time evolution

Why are abstractions good and important?
Hides details so that users & programmers can be creative

The role of abstractions in classical computing

Are abstractions always good?

What are examples of deliberately breaking abstractions?

The role of abstractions in classical computing

Are abstractions always good?

What are examples of deliberately breaking abstractions?
• Python calling C binary (Breaking interpreted high level PL abstraction)
• Assembly code routines (Breaking structured programming abstraction)
• FPGAs (Breaking ISA abstraction)
• ASICs (Breaking von Neumann abstraction)

These two lectures: Broad view of open
challenges in quantum computer engineering

• A complete view of full-stack quantum
computing.

• In short, challenges are in finding and building
abstractions.

• In each layer, why we don’t or can’t have good
abstractions right now.

• Recent and rapidly developing field of
research.

A Microarchitecture for a Superconducting
Quantum Processor. Fu et al.

All the quantum computer abstractions we
don’t yet have right now
1. Fault-tolerant, error-corrected quantum computers for algorithms
2. Programming: High level languages to aid algorithm discovery
3. Programming: Facilities for program correctness (debuggers, assertions)
4. Programming: Intermediate representations that aid analysis
5. Simulation: Support to validate and design next-gen quantum computers
6. Architecture: Standard instruction set architectures
7. Architecture: Memory hierarchy to store quantum data
8. Microarchitecture: Abundant and reliable quantum devices

All the quantum computer abstractions we
don’t yet have right now
1. Fault-tolerant, error-corrected quantum computers for algorithms
2. Programming: High level languages to aid algorithm discovery
3. Programming: Facilities for program correctness (debuggers, assertions)
4. Programming: Intermediate representations that aid analysis
5. Simulation: Support to validate and design next-gen quantum computers
6. Architecture: Standard instruction set architectures
7. Architecture: Memory hierarchy to store quantum data
8. Microarchitecture: Abundant and reliable quantum devices

CLRS TPC

Berkeley Dwarfs 2010

Parallelism and dependency patterns

LinenAsahm Spare IN
Dense T
Structure

jfinifpf.cmfiifg.ggUnstuck finitum

Nbody

die
state machines
combinatoriallogic
dynamic pros
graphed models

QDB: From Quantum Algorithms Towards Correct Quantum Programs. Huang and Martonosi.

HHC linenalgebra

QDB: From Quantum Algorithms Towards Correct Quantum Programs. Huang and Martonosi.

Fault tolerant,
error corrected
quantum
algorithms

Noisy,
intermediate-
scale quantum
algorithms

Shor’s integer factoring algorithm

Factoring underpins cryptosystems.
For number represented as N bits—

Classical algorithm: needs !(#! !) operations
Factoring 512-bit integer: 8400 years. 1024-bit integer: 13*1012 years.

Quantum algorithm: needs !(%" &'(%) operations
Factoring 512-bit integer: 3.5 hours. 1024-bit integer: 31 hours.

A Practical Architecture for Reliable Quantum Computers. Oskin et al.

A Blueprint for Building a Quantum Computer. Van Meter and Horsman.

An Outlook for Quantum Computing. Maslov et al.

An Outlook for Quantum Computing. Maslov et al.

How to factor 2048 bit RSA
integers in 8 hours using 20
million noisy qubits. Gidney
and Ekerå. 2019.

An Outlook for Quantum Computing. Maslov et al.

Need applications to
motivate further
research.

QDB: From Quantum Algorithms Towards Correct Quantum Programs. Huang and Martonosi.

Fault tolerant,
error corrected
quantum
algorithms

Noisy,
intermediate-
scale quantum
algorithms

All the quantum computer abstractions we
don’t yet have right now
1. Fault-tolerant, error-corrected quantum computers for algorithms
2. Programming: High level languages to aid algorithm discovery
3. Programming: Facilities for program correctness (debuggers, assertions)
4. Programming: Intermediate representations that aid analysis
5. Simulation: Support to validate and design next-gen quantum computers
6. Architecture: Standard instruction set architectures
7. Architecture: Memory hierarchy to store quantum data
8. Microarchitecture: Abundant and reliable quantum devices

Underappreciated fact:
Programming languages aid discovery of algorithms

Algorithms

Coding

Programs

Computer
science

Underappreciated fact:
Programming languages aid discovery of algorithms
https://www.geeksforgeeks.org/random-walk-implementation-python/

Take classical random walks as an example. Notice:
1. Ease of going from 1D example to 2D example (reusable code).
2. Ease of generating a visualization.
3. Code and simulation reveals properties useful for new algorithms.

https://www.geeksforgeeks.org/random-walk-implementation-python/

Underappreciated fact:
Programming languages aid discovery of algorithms

Algorithms

Coding

Programs

Computer
science

Specification of algorithm as a procedure

https://www.geeksforgeeks.org/random-walk-implementation-python/

Take classical random walks as an example. Notice:
1. Import library for random coin toss
2. Data structures for time series
3. Standard operators for increment and decrement

https://www.geeksforgeeks.org/random-walk-implementation-python/

What do we mean by high-level language?

// Create a list of strings
ArrayList<String> al = new ArrayList<String>();
al.add("Quantum");
al.add("Computing");
al.add("Programs");
al.add("Systems");

/* Collections.sort method is sorting the
elements of ArrayList in ascending order. */
Collections.sort(al);

High-level language hides all these concerns:

• Choice of sorting algorithm implementation and comparator function
on Strings
• Encoding of Strings as binary numbers
• Memory allocation and deallocation for String storage
• Execution of Java code on different ISAs
• Correctness of library implementation
• …

• We want to get to that point with quantum programming

• Want to do things such as: initialize quantum data, perform search,
without worrying about the detailed implementation

Programmers’ time is scarce.
Classical computing resources are abundant.
Nonetheless, abstractions are expensive.

"There’s plenty of room at the Top: What will drive computer performance after Moore’s law?" Leiserson et al. Science. 2020.

Programming languages aid discovery of algorithms:
Is it currently true for quantum computer science?

Quantum
algorithms

Quantum
coding

Quantum
programs

Quantum
computer

science

Only ~100 known
quantum algorithms

Specification of quantum algorithm
as a quantum procedure

Quantum
algorithms

Quantum
coding

Quantum
programs

Quantum
computer

science

As another example, QAOA on Cirq exercise:
https://rutgers.instructure.com/courses/73314
/assignments/1017995

Gates to code that we can run.

Need quantum equivalent of:
1. Partition representation
2. Edge constraints
3. Way to perturb partitioning

https://rutgers.instructure.com/courses/73314/assignments/1017995
https://rutgers.instructure.com/courses/73314/assignments/1017995

Specification of quantum algorithm
as a quantum procedure

Quantum
algorithms

Quantum
coding

Quantum
programs

Quantum
computer

science

Functional quantum programming languages
(emphasis on specifying the mathematics)
Microsoft Liquid
Quipper
QWIRE
Microsoft Q#
Etc.

Imperative quantum programming languages
(emphasis on specifying the resources)
Scaffold
Microsoft ProjectQ
Rigetti PyQuil
IBM Qiskit
Google Cirq
Etc.

Programming languages aid discovery of algorithms:
Is it currently true for quantum computer science?

Quantum
algorithms

Quantum
coding

Quantum
programs

Quantum
computer

science

Only ~100 known
quantum algorithms

Some progress in the
past two years.
Qiskit Aqua
OpenFermion-Cirq
TensorFlow Quantum

Given the
implementation for
Deutsch’s algorithm, is
it obvious how to
implement Deutsch-
Jozsa’s algorithm?

QDB: From Quantum Algorithms Towards Correct Quantum Programs. Huang and Martonosi.

All the quantum computer abstractions we
don’t yet have right now
1. Fault-tolerant, error-corrected quantum computers for algorithms
2. Programming: High level languages to aid algorithm discovery
3. Programming: Facilities for program correctness (debuggers, assertions)
4. Programming: Intermediate representations that aid analysis
5. Simulation: Support to validate and design next-gen quantum computers
6. Architecture: Standard instruction set architectures
7. Architecture: Memory hierarchy to store quantum data
8. Microarchitecture: Abundant and reliable quantum devices

 12 / 15
From: https://www.seas.upenn.edu/~cis500/current/lectures/lec01.pdf

Execution in target machine w/ facilities for validation

• Exception handling.
• Printf debugging.
• GDB breakpoints.
• Assertions.
• Etc.

• “Exception handling” (i.e., quantum error correction) is costly.
• No printf. No intermediate measurements.
• Can’t set arbitrary breakpoints.
• Few obvious assertions.

Even simple quantum programming bugs lead to non-obvious symptoms

U

q0

q1 C

q0

q1 B A

D
=

Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

U

q0

q1 C

q0

q1 B A

D
=

Even simple quantum programming bugs lead to non-obvious symptoms

Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

U

q0

q1 C

q0

q1 B A

D
=

Elementary single-qubit operations

Even simple quantum programming bugs lead to non-obvious symptoms

U

q0

q1 C

q0

q1 B A

D
=

Elementary two-qubit operations
Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Even simple quantum programming bugs lead to non-obvious symptoms

Unneeded

U

q0

q1 C

q0

q1 B A

D
=

Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Even simple quantum programming bugs lead to non-obvious symptoms

Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q1, +angle/2); // A
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Correct,
operation C unneeded

Unneeded

U

q0

q1 C

q0

q1 B A

D
=

Even simple quantum programming bugs lead to non-obvious symptoms

Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q1, +angle/2); // A
Rz(q0, +angle/2); // D

Rz(q1, -angle/2);
CNOT(q0, q1);
Rz(q1, +angle/2);
CNOT(q0, q1);
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Correct,
operation C unneeded

Incorrect,
angles flipped

Unneeded?
But signs on angles wrong!

U

q0

q1 C

q0

q1 B A

D
=

Many ways to translate basic quantum operations to program code—many details to get right!

Even simple quantum programming bugs lead to non-obvious symptoms

Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q1, +angle/2); // A
Rz(q0, +angle/2); // D

Rz(q1, -angle/2);
CNOT(q0, q1);
Rz(q1, +angle/2);
CNOT(q0, q1);
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Correct,
operation C unneeded

Incorrect,
angles flipped

|1 ⟩1 → $!∗#$%&'|1 ⟩1 |1 ⟩1 → $!∗#$%&'|1 ⟩1 |1 ⟩1 → $(!∗#$%&'|1 ⟩1

U

q0

q1 C

q0

q1 B A

D
=

Even simple quantum programming bugs lead to non-obvious symptoms

Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q1, +angle/2); // A
Rz(q0, +angle/2); // D

Rz(q1, -angle/2);
CNOT(q0, q1);
Rz(q1, +angle/2);
CNOT(q0, q1);
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Correct,
operation C unneeded

Incorrect,
angles flipped

|1 ⟩1 → $!∗#$%&'|1 ⟩1 |1 ⟩1 → $!∗#$%&'|1 ⟩1 |1 ⟩1 → $(!∗#$%&'|1 ⟩1

U

q0

q1 C

q0

q1 B A

D
=

Even simple quantum programming bugs lead to non-obvious symptoms

Rz(q1, +angle/2); // C
CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q0, +angle/2); // D

CNOT(q0, q1);
Rz(q1, -angle/2); // B
CNOT(q0, q1);
Rz(q1, +angle/2); // A
Rz(q0, +angle/2); // D

Rz(q1, -angle/2);
CNOT(q0, q1);
Rz(q1, +angle/2);
CNOT(q0, q1);
Rz(q0, +angle/2); // D

Correct,
operation A unneeded

Correct,
operation C unneeded

Incorrect,
angles flipped

|1 ⟩1 → $!∗#$%&'|1 ⟩1 |1 ⟩1 → $!∗#$%&'|1 ⟩1 |1 ⟩1 → $(!∗#$%&'|1 ⟩1

U

q0

q1 C

q0

q1 B A

D
=

Even simple quantum programming bugs lead to non-obvious symptoms

QDB: From Quantum Algorithms Towards Correct Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 46

Detailed debugging of Shor’s factorization algorithm

Image credit: Metodi, Faruque, and Chong, Quantum Computing for Computer Architects, 2nd Ed., p26

FEE

QDB: From Quantum Algorithms Towards Correct Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 47

Detailed debugging of Shor’s factorization algorithm

Image credit: Metodi, Faruque, and Chong, Quantum Computing for Computer Architects, 2nd Ed., p26

Quantum part of algorithm Classical post processing

48

Bug type 3-B: mistake in composing gates using mirroring
Mirror image
submodules

Mirror image
submodules

Assertions on classical &
superposition states
help us decide whether
programs are correct

Testbench for quantum Fourier transform,
consisting of controlled-rotations

Assertions on classical &
superposition states
help us decide whether
programs are correct

Testbench for quantum Fourier transform,
consisting of controlled-rotations

QFT and iQFT should be inverses,
but bug in controlled-rotations
would lead to flawed inversion

Assertions on classical &
superposition states
help us decide whether
programs are correct

Testbench for quantum Fourier transform,
consisting of controlled-rotations

QFT and iQFT should be inverses,
but bug in controlled-rotations
would lead to flawed inversion

Assertions on classical &
superposition states
help us decide whether
programs are correct

Testbench for quantum Fourier transform,
consisting of controlled-rotations

QFT and iQFT should be inverses,
but bug in controlled-rotations
would lead to flawed inversion

Flawed inversion caught in
failure of classical assertion
based on Chi-squared tests

Assertions on classical &
superposition states
help us decide whether
programs are correct

Testbench for quantum Fourier transform,
consisting of controlled-rotations

QFT and iQFT should be inverses,
but bug in controlled-rotations
would lead to flawed inversion

Flawed inversion caught in
failure of classical assertion
based on Chi-squared tests

Toolchain for debugging programs with tests on measurements

Breakpoint
annotations

Quantum
assembly

code

Simulate /
execute on
prototype
quantum
computer

Ensemble
of

measurements

Statistical test:
Is there
a bug?

Assertion
annotations

QDB: From Quantum Algorithms Towards Correct Quantum Programs
Yipeng Huang, Margaret Martonosi | Princeton University 55

Quantum program bug types

1. Quantum initial values
2. Basic operations
3. Composing operations

A. Iteration
B. Mirroring

4. Classical input parameters
5. Garbage collection of qubits

Defenses, debugging, and assertions

1. Preconditions
2. Subroutines / unit tests
3. Quantum specific language support

A. Numeric data types
B. Reversible computation

4. Algorithm progress assertions
5. Postconditions

A first taxonomy of quantum program bugs and defenses.

All the quantum computer abstractions we
don’t yet have right now
1. Fault-tolerant, error-corrected quantum computers for algorithms
2. Programming: High level languages to aid algorithm discovery
3. Programming: Facilities for program correctness (debuggers, assertions)
4. Programming: Intermediate representations that aid analysis
5. Simulation: Support to validate and design next-gen quantum computers
6. Architecture: Standard instruction set architectures
7. Architecture: Memory hierarchy to store quantum data
8. Microarchitecture: Abundant and reliable quantum devices

H
q0m0

q1m0

q0m2

q1m3

PD
γ=.36

q0m1

H
q0m0

q1m0

q0m2

q1m3

PD
γ=.36

q0m1

q0m0

q0m2
rv

q1m0

q0m1

q1m3

H
q0m0

q1m0

q0m2

q1m3

PD
γ=.36

q0m1

q0m0

q0m2
rv

q1m0

q0m1

q1m3

H
q0m0

q1m0

q0m2

q1m3

PD
γ=.36

q0m1

q0m0

q0m2
rv

q1m0

q0m1

q1m3

Benchmarking ZX Calculus Circuit Optimization
Against Qiskit Transpilation. Yeh et al.

All the quantum computer abstractions we
don’t yet have right now
1. Fault-tolerant, error-corrected quantum computers for algorithms
2. Programming: High level languages to aid algorithm discovery
3. Programming: Facilities for program correctness (debuggers, assertions)
4. Programming: Intermediate representations that aid analysis
5. Simulation: Support to validate and design next-gen quantum computers
6. Architecture: Standard instruction set architectures
7. Architecture: Memory hierarchy to store quantum data
8. Microarchitecture: Abundant and reliable quantum devices

Role of simulation in classical computer
engineering

• VirtualBox
• Gem5
• Synopsys / Cadence
• Spice

Warner Brothers PicturesRos Gazebo

Why is simulation important?

• "Developing good classical simulations (or even attempting to and
failing) would also help clarify the quantum/classical boundary.”
—Aram Harrow

• Development and debugging of quantum algorithm implementations

Classical simulations of quantum computing

Quantum supremacy using a programmable superconducting processor (supplement). Arute et al.

• Until we have quantum computer systems, building and testing
quantum computers will rely on classical computer systems.

All the quantum computer abstractions we
don’t yet have right now
1. Fault-tolerant, error-corrected quantum computers for algorithms
2. Programming: High level languages to aid algorithm discovery
3. Programming: Facilities for program correctness (debuggers, assertions)
4. Programming: Intermediate representations that aid analysis
5. Simulation: Support to validate and design next-gen quantum computers
6. Architecture: Standard instruction set architectures
7. Architecture: Memory hierarchy to store quantum data
8. Microarchitecture: Abundant and reliable quantum devices

A small set of quantum gates are universal…

Quantum Computer Systems for Scientific Discovery. Alexeev et al.

…but those universal gates decompose
various ways…

A systems perspective of quantum computing. Matsuura et al.

…and different quantum hardware support
different gates.

Architecting Noisy Intermediate-Scale Quantum Computers: A Real-System Study. Murali et al.

All the quantum computer abstractions we
don’t yet have right now
1. Fault-tolerant, error-corrected quantum computers for algorithms
2. Programming: High level languages to aid algorithm discovery
3. Programming: Facilities for program correctness (debuggers, assertions)
4. Programming: Intermediate representations that aid analysis
5. Simulation: Support to validate and design next-gen quantum computers
6. Architecture: Standard instruction set architectures
7. Architecture: Memory hierarchy to store quantum data
8. Microarchitecture: Abundant and reliable quantum devices

Challenges and Opportunities of Near-Term Quantum
Computing Systems. Corcoles et al.

Compiling quantum program abstractions to
optimal quantum execution

Compilation for maximum correctness, while respecting constraints:
• variable qubit, operation, measurement reliability
• connectivity constraints
• parallelism

Will be topic of chapter on “extracting success.”

All the quantum computer abstractions we
don’t yet have right now
1. Fault-tolerant, error-corrected quantum computers for algorithms
2. Programming: High level languages to aid algorithm discovery
3. Programming: Facilities for program correctness (debuggers, assertions)
4. Programming: Intermediate representations that aid analysis
5. Simulation: Support to validate and design next-gen quantum computers
6. Architecture: Standard instruction set architectures
7. Architecture: Memory hierarchy to store quantum data
8. Microarchitecture: Abundant and reliable quantum devices

Challenges and Opportunities of Near-Term Quantum
Computing Systems. Corcoles et al.

Quantum Computing Progress and Prospects. National Academies Press.

Quantum Computing Progress and Prospects. National Academies Press.

Intel

Intel Computer History Museum

Intel

Wikipedia

Position statement for this graduate seminar

• Quantum computer engineering has become important.

• Requires computer systems expertise beyond quantum algorithms
and quantum device physics.

