
1/24

Machine-Level Representation of Programs: Loops,
Procedures

Yipeng Huang

Rutgers University

March 28, 2024

2/24

Table of contents
Announcements
Loop statements

Compiling for loops to while loops
Compiling while loops to do-while loops
Compiling do-while loops to goto statements
Compiling goto statements to assembly conditional jump instructions

Switch statements
Procedures and function calls

Memory stack frames
Procedures and function calls: Transferring control

Procedure call and return: call and ret
Example in GDB

Procedures and function calls: Transferring data
Data transferred via registers
Data transferred via memory

Architecture support for recursive programming

3/24

Announcements

Class session plan

▶ Thursday, 3/28: Function calls in assembly. (Book chapter 3.7). Bomblab
phase_4.

▶ Tuesday, 4/2: Arrays and data structures in assembly. (Book chapter 3.8).
Bomblab phase_5, phase_6.

4/24

Table of contents
Announcements
Loop statements

Compiling for loops to while loops
Compiling while loops to do-while loops
Compiling do-while loops to goto statements
Compiling goto statements to assembly conditional jump instructions

Switch statements
Procedures and function calls

Memory stack frames
Procedures and function calls: Transferring control

Procedure call and return: call and ret
Example in GDB

Procedures and function calls: Transferring data
Data transferred via registers
Data transferred via memory

Architecture support for recursive programming

5/24

Compiling for loops to while loops
C loop statements such as for loops, while loops, and do-while loops do not exist
in assembly. They are instead constructed from conditional jump statements.

1 unsigned long count_bits_for (
2 unsigned long number
3) {
4 unsigned long tally = 0;
5 for (
6 int shift=0; // init
7 shift<8*sizeof(unsigned long);←↩

// test
8 shift++ // update
9) {

10 // body
11 tally += 0b1 & number>>shift;
12 }
13 return tally;
14 }

1 unsigned long count_bits_while (
2 unsigned long number
3) {
4 unsigned long tally = 0;
5 int shift=0; // init
6 while (
7 shift<8*sizeof(unsigned long) ←↩

// test
8) {
9 // body

10 tally += 0b1 & number>>shift;
11 shift++; // update
12 }
13 return tally;
14 }

6/24

Compiling while loops to do-while loops

1 unsigned long count_bits_while (
2 unsigned long number
3) {
4 unsigned long tally = 0;
5 int shift=0; // init
6 while (
7 shift<8*sizeof(unsigned long) ←↩

// test
8) {
9 // body

10 tally += 0b1 & number>>shift;
11 shift++; // update
12 }
13 return tally;
14 }

1 unsigned long count_bits_do_while ←↩
(

2 unsigned long number
3) {
4 unsigned long tally = 0;
5 int shift=0; // init
6 do {
7 // body
8 tally += 0b1 & number>>shift;
9 shift++; // update

10 } while (shift<8*sizeof(unsigned←↩
long)); // test

11 return tally;
12 }

If initial iteration is guaranteed to run, then do one fewer test.

7/24

Compiling do-while loops to goto statements

1 unsigned long count_bits_do_while ←↩
(

2 unsigned long number
3) {
4 unsigned long tally = 0;
5 int shift=0; // init
6 do {
7 // body
8 tally += 0b1 & number>>shift;
9 shift++; // update

10 } while (shift<8*sizeof(unsigned←↩
long)); // test

11 return tally;
12 }

1 unsigned long count_bits_goto (
2 unsigned long number
3) {
4 unsigned long tally = 0;
5 int shift=0; // init
6 LOOP:
7 // body
8 tally += 0b1 & number>>shift;
9 shift++; // update

10 if (shift<8*sizeof(unsigned long←↩
)) { // test

11 goto LOOP;
12 }
13 return tally;
14 }

Loops get compiled into goto statements which are readily translated to assembly.

8/24

Compiling goto statements to assembly conditional jump
instructions
1 unsigned long count_bits_goto (
2 unsigned long number
3) {
4 unsigned long tally = 0;
5 int shift=0; // init
6 LOOP:
7 // body
8 tally += 0b1 & number>>shift;
9 shift++; // update

10 if (shift<8*sizeof(unsigned long←↩
)) { // test

11 goto LOOP;
12 }
13 return tally;
14 }

All C loop statements so far translate to
assembly at right.

count_bits_for:
count_bits_while:
count_bits_do_while:
count_bits_goto:

xorl %ecx, %ecx # int shift=0; // init
xorl %eax, %eax # unsigned long tally = 0;

.LOOP:
movq %rdi, %rdx # number
shrq %cl, %rdx # number>>shift
incl %ecx # shift++; // update
andl $1, %edx. # 0b1 & number>>shift
addq %rdx, %rax # tally += 0b1 & number>>shift;
cmpl $64, %ecx # shift<8*sizeof(unsigned long)
jne .LOOP # goto LOOP;
ret # return tally;

9/24

Table of contents
Announcements
Loop statements

Compiling for loops to while loops
Compiling while loops to do-while loops
Compiling do-while loops to goto statements
Compiling goto statements to assembly conditional jump instructions

Switch statements
Procedures and function calls

Memory stack frames
Procedures and function calls: Transferring control

Procedure call and return: call and ret
Example in GDB

Procedures and function calls: Transferring data
Data transferred via registers
Data transferred via memory

Architecture support for recursive programming

10/24

Table of contents
Announcements
Loop statements

Compiling for loops to while loops
Compiling while loops to do-while loops
Compiling do-while loops to goto statements
Compiling goto statements to assembly conditional jump instructions

Switch statements
Procedures and function calls

Memory stack frames
Procedures and function calls: Transferring control

Procedure call and return: call and ret
Example in GDB

Procedures and function calls: Transferring data
Data transferred via registers
Data transferred via memory

Architecture support for recursive programming

11/24

Procedures and function calls

P(…) {
•
•
y = Q(x);
print(y)
•

}

int Q(int i)
{

int t = 3*i;
int v[10];
•
•
return v[t];

}

Figure: Steps of a C function
call. Image credit CS:APP

To create the abstraction of functions, need to:
▶ Transfer control to function and back
▶ Transfer data to function (parameters)
▶ transfer data from function (return type)

12/24

Memory stack frames

Frame for
executing
function Q

Frame for calling
function P

Local variables

Argument
build area

Return address

Argument 7

Argument n

Stack pointer
%rsp

Stack “top”

Stack “bottom”

Increasing
address

Earlier frames

Saved registers

Figure: Structure of stack.
Image credit CS:APP

Structure of stack for currently executing
function Q()
▶ P() calls Q(). P() is the caller function. Q() is the

callee function.

13/24

Stack instructions: push src and pop dest

Increasing
address

Stack “top”

Stack “bottom”

0x108

Stack “top”

Stack “bottom”

0x100

Stack “top”

Stack “bottom”

0x108
0x123

0x123

0

0x108

%rax

%rdx

%rsp

Initially

0x123

0

0x100

%rax

%rdx

%rsp

pushq %rax

0x123

0x123

0x108

%rax

%rdx

%rsp

popq %rdx

0x123
0x108

Figure: x86-64 offers dedicated instructions to work with stack in memory. In addition to
moving data, the updating of %rsp is implied. Image credit: CS:APP.

14/24

Table of contents
Announcements
Loop statements

Compiling for loops to while loops
Compiling while loops to do-while loops
Compiling do-while loops to goto statements
Compiling goto statements to assembly conditional jump instructions

Switch statements
Procedures and function calls

Memory stack frames
Procedures and function calls: Transferring control

Procedure call and return: call and ret
Example in GDB

Procedures and function calls: Transferring data
Data transferred via registers
Data transferred via memory

Architecture support for recursive programming

15/24

CPU and memory state in support of procedures and functions

Carnegie Mellon

12 Bryant	 and	 O’Hallaron,	 Computer	 Systems:	 A	 Programmer’s	 Perspec�ve,	 Third	 Edi�on	

CPU	

Assembly/Machine	 Code	 View	

Programmer-‐Visible	 State	
§  PC:	 Program	 counter	

§  Address	 of	 next	 instruc�on	
§  Called	 “RIP”	 (x86-‐64)	

§  Register	 file	
§  Heavily	 used	 program	 data	

§  Condi�on	 codes	
§  Store	 status	 informa�on	 about	 most	
recent	 arithme�c	 or	 logical	 opera�on	

§  Used	 for	 condi�onal	 branching	

PC	
Registers	

Memory	

Code	
Data	
Stack	

Addresses	

Data	

Instruc�ons	 Condi�on	
Codes	

§ Memory	
§  Byte	 addressable	 array	
§  Code	 and	 user	 data	
§  Stack	 to	 support	 procedures	

Figure: View of computer from assembly. Image credit CS:APP

Relevant state in CPU:
▶ %rip register /

instruction pointer
/ program counter

▶ %rsp register /
stack pointer

Relevant state in
Memory:

▶ Stack

16/24

Procedure call and return: call and ret

0x400563
0x7fffffffe840

%rip
%rsp

(a) E x e c u t i n g c a l l

0x400568

(b) A f t e r c a l l (c) A f t e r r e t

0x400540
0x7fffffffe838

%rip
%rsp

0x400568
0x7fffffffe840

%rip
%rsp

Figure: Effect of call 0x400540 instruction and subsequent return. call and ret
instructions update the instruction pointer, the stack pointer, and the stack to create the
procedure / function call abstraction. Image credit: CS:APP.

17/24

Example in GDB
1 #include <stdio.h>
2

3 int return_neg_one() {
4 return -1;
5 }
6

7 int main() {
8 int num = return_neg_one();
9 printf("%d", num);

10 return 0;
11 }

return_neg_one:
movl $-1, %eax
ret

main:
subq $8, %rsp
movl $0, %eax
call return_neg_one
movl %eax, %edx
...

Compile, and then run it in GDB:
gdb return

In GDB, see evolution of %rip, %rsp,
and stack:

▶ (gdb) layout split

▶ (gdb) break return_neg_one

▶ (gdb) info stack

▶ (gdb) print /a $rip

▶ (gdb) print /a $rsp

▶ (gdb) x /a $rsp

Step past return instruction, and
inspect again:

▶ (gdb) stepi

▶ (gdb) info stack

18/24

Table of contents
Announcements
Loop statements

Compiling for loops to while loops
Compiling while loops to do-while loops
Compiling do-while loops to goto statements
Compiling goto statements to assembly conditional jump instructions

Switch statements
Procedures and function calls

Memory stack frames
Procedures and function calls: Transferring control

Procedure call and return: call and ret
Example in GDB

Procedures and function calls: Transferring data
Data transferred via registers
Data transferred via memory

Architecture support for recursive programming

19/24

Procedures and function calls: Transferring data
For purposes of this class, the Bomb Lab, and the CS:APP textbook, we study the
x86-64 Linux Application Binary Interface (ABI). Would be different on ARM or in
Windows. So, don’t memorize this, but it is helpful for PA4 Lab.

Passing parameters

Parameter Register / stack Subset registers Mnemonic1

1st %rdi %edi, %di Diane’s
2nd %rsi %esi, %si silk
3rd %rdx %edx, %dx, %dl dress
4th %rcx %ecx, %cx, %cl cost
5th %r8 %r8d $8
6th %r9 %r9d 9

7th and beyond Stack

1http://csappbook.blogspot.com/2015/08/dianes-silk-dress-costs-89.html

http://csappbook.blogspot.com/2015/08/dianes-silk-dress-costs-89.html

20/24

PA4 Defusing a Binary Bomb: sscanf();

1 int sscanf (
2 const char *str, // 1st arg, %rdi
3 const char *format, // 2nd arg, %rsi
4 ...
5)

21/24

Procedures and function calls: Transferring data

Passing function return data
Function return data is passed via:
▶ the 64-bit %rax register
▶ the 32-bit subset %eax register

Example from textbook slides on assembly procedures
Slides 33 through 38.

22/24

Data transferred via memory

Frame for
executing
function Q

Frame for calling
function P

Local variables

Argument
build area

Return address

Argument 7

Argument n

Stack pointer
%rsp

Stack “top”

Stack “bottom”

Increasing
address

Earlier frames

Saved registers

Figure: Structure of stack.
Image credit CS:APP

Structure of stack for currently executing
function Q()
▶ P() calls Q(). P() is the caller function. Q() is the

callee function.

Example from textbook slides on assembly
procedures
Slides 40 through 44.

23/24

Table of contents
Announcements
Loop statements

Compiling for loops to while loops
Compiling while loops to do-while loops
Compiling do-while loops to goto statements
Compiling goto statements to assembly conditional jump instructions

Switch statements
Procedures and function calls

Memory stack frames
Procedures and function calls: Transferring control

Procedure call and return: call and ret
Example in GDB

Procedures and function calls: Transferring data
Data transferred via registers
Data transferred via memory

Architecture support for recursive programming

24/24

3_recursion.c: Putting it all together to support recursion

Discussion points

▶ Use info stack, info args in GDB to see recursion depth
▶ Difference between compiling with and without -g for debugging

information.
▶ Memory costs of recursion.
▶ Compilers can recognize tail recursive calls to reduce memory use. Enabled

with -foptimize-sibling-calls, -O2, -O3, and -Os.

	Announcements
	Loop statements
	Compiling for loops to while loops
	Compiling while loops to do-while loops
	Compiling do-while loops to goto statements
	Compiling goto statements to assembly conditional jump instructions

	Switch statements
	Procedures and function calls
	Memory stack frames

	Procedures and function calls: Transferring control
	Procedure call and return: call and ret
	Example in GDB

	Procedures and function calls: Transferring data
	Data transferred via registers
	Data transferred via memory

	Architecture support for recursive programming

