
1/32

Machine-Level Representation of Programs: Data and
Locality

Yipeng Huang

Rutgers University

April 2, 2024

2/32

Table of contents
Announcements
Procedures, function calls, and support for recursion

Transfer of control to callee
Transfer of data to callee
Transfer of control back to caller
Transfer of data back to caller and restoring caller state

Architecture support for recursive programming
Cache, memory, storage, and network hierarchy trends

Static random-access memory (registers, caches)
Dynamic random-access memory (main memory)
Solid state and hard disk drives (storage)

Locality: How to create illusion of fast access to capacious data
Spatial locality
Temporal locality

Caches: motivation
Hardware caches supports software locality
Software locality exploits hardware caches

3/32

Announcements

Class session plan

▶ Tuesday, 4/2: Arrays and data structures in assembly. (Book chapter 3.8).
Bomblab phase_5, phase_6.

4/32

Table of contents
Announcements
Procedures, function calls, and support for recursion

Transfer of control to callee
Transfer of data to callee
Transfer of control back to caller
Transfer of data back to caller and restoring caller state

Architecture support for recursive programming
Cache, memory, storage, and network hierarchy trends

Static random-access memory (registers, caches)
Dynamic random-access memory (main memory)
Solid state and hard disk drives (storage)

Locality: How to create illusion of fast access to capacious data
Spatial locality
Temporal locality

Caches: motivation
Hardware caches supports software locality
Software locality exploits hardware caches

5/32

Procedures and function calls

P(…) {
•
•
y = Q(x);
print(y)
•

}

int Q(int i)
{

int t = 3*i;
int v[10];
•
•
return v[t];

}

Figure: Steps of a C function
call. Image credit CS:APP

To create the abstraction of functions, need to:
▶ Transfer control to function
▶ Transfer data to function (parameters)
▶ Transfer control back from function
▶ Transfer data back from function (return type)
▶ Restore caller context

6/32

CPU and memory state in support of procedures and functions

Carnegie Mellon

12 Bryant	 and	 O’Hallaron,	 Computer	 Systems:	 A	 Programmer’s	 Perspec�ve,	 Third	 Edi�on	

CPU	

Assembly/Machine	 Code	 View	

Programmer-‐Visible	 State	
§  PC:	 Program	 counter	

§  Address	 of	 next	 instruc�on	
§  Called	 “RIP”	 (x86-‐64)	

§  Register	 file	
§  Heavily	 used	 program	 data	

§  Condi�on	 codes	
§  Store	 status	 informa�on	 about	 most	
recent	 arithme�c	 or	 logical	 opera�on	

§  Used	 for	 condi�onal	 branching	

PC	
Registers	

Memory	

Code	
Data	
Stack	

Addresses	

Data	

Instruc�ons	 Condi�on	
Codes	

§ Memory	
§  Byte	 addressable	 array	
§  Code	 and	 user	 data	
§  Stack	 to	 support	 procedures	

Figure: View of computer from assembly. Image credit CS:APP

Relevant state in CPU:
▶ %rip register /

instruction pointer
/ program counter

▶ %rsp register /
stack pointer

Relevant state in
Memory:

▶ Stack

7/32

Procedures and function calls: Transferring data
For purposes of this class, the Bomb Lab, and the CS:APP textbook, we study the
x86-64 Linux Application Binary Interface (ABI). Would be different on ARM or in
Windows. So, don’t memorize this, but it is helpful for PA4 Lab.

Passing parameters

Parameter Register / stack Subset registers Mnemonic1

1st %rdi %edi, %di Diane’s
2nd %rsi %esi, %si silk
3rd %rdx %edx, %dx, %dl dress
4th %rcx %ecx, %cx, %cl cost
5th %r8 %r8d $8
6th %r9 %r9d 9

7th and beyond Stack

1http://csappbook.blogspot.com/2015/08/dianes-silk-dress-costs-89.html

http://csappbook.blogspot.com/2015/08/dianes-silk-dress-costs-89.html

8/32

PA4 Defusing a Binary Bomb: sscanf();

1 int sscanf (
2 const char *str, // 1st arg, %rdi
3 const char *format, // 2nd arg, %rsi
4 ...
5)

9/32

Memory stack frames

Frame for
executing
function Q

Frame for calling
function P

Local variables

Argument
build area

Return address

Argument 7

Argument n

Stack pointer
%rsp

Stack “top”

Stack “bottom”

Increasing
address

Earlier frames

Saved registers

Figure: Structure of stack.
Image credit CS:APP

Structure of stack for currently executing
function Q()
▶ P() calls Q(). P() is the caller function. Q() is the

callee function.

10/32

Stack instructions: push src and pop dest

Increasing
address

Stack “top”

Stack “bottom”

0x108

Stack “top”

Stack “bottom”

0x100

Stack “top”

Stack “bottom”

0x108
0x123

0x123

0

0x108

%rax

%rdx

%rsp

Initially

0x123

0

0x100

%rax

%rdx

%rsp

pushq %rax

0x123

0x123

0x108

%rax

%rdx

%rsp

popq %rdx

0x123
0x108

Figure: x86-64 offers dedicated instructions to work with stack in memory. In addition to
moving data, the updating of %rsp is implied. Image credit: CS:APP.

11/32

Procedure call and return: call and ret

0x400563
0x7fffffffe840

%rip
%rsp

(a) E x e c u t i n g c a l l

0x400568

(b) A f t e r c a l l (c) A f t e r r e t

0x400540
0x7fffffffe838

%rip
%rsp

0x400568
0x7fffffffe840

%rip
%rsp

Figure: Effect of call 0x400540 instruction and subsequent return. call and ret
instructions update the instruction pointer, the stack pointer, and the stack to create the
procedure / function call abstraction. Image credit: CS:APP.

12/32

Example in GDB
1 #include <stdio.h>
2

3 int return_neg_one() {
4 return -1;
5 }
6

7 int main() {
8 int num = return_neg_one();
9 printf("%d", num);

10 return 0;
11 }

return_neg_one:
movl $-1, %eax
ret

main:
subq $8, %rsp
movl $0, %eax
call return_neg_one
movl %eax, %edx
...

Compile, and then run it in GDB:
gdb return

In GDB, see evolution of %rip, %rsp,
and stack:

▶ (gdb) layout split

▶ (gdb) break return_neg_one

▶ (gdb) info stack

▶ (gdb) print /a $rip

▶ (gdb) print /a $rsp

▶ (gdb) x /a $rsp

Step past return instruction, and
inspect again:

▶ (gdb) stepi

▶ (gdb) info stack

13/32

Transfer of data back to caller

Passing function return data
Function return data is passed via:
▶ the 64-bit %rax register
▶ the 32-bit subset %eax register

Example from textbook slides on assembly procedures
Slides 33 through 38.

14/32

Restoring caller state

Frame for
executing
function Q

Frame for calling
function P

Local variables

Argument
build area

Return address

Argument 7

Argument n

Stack pointer
%rsp

Stack “top”

Stack “bottom”

Increasing
address

Earlier frames

Saved registers

Figure: Structure of stack.
Image credit CS:APP

Structure of stack for currently executing
function Q()
▶ P() calls Q(). P() is the caller function. Q() is the

callee function.

Example from textbook slides on assembly
procedures
Slides 40 through 44.

15/32

Table of contents
Announcements
Procedures, function calls, and support for recursion

Transfer of control to callee
Transfer of data to callee
Transfer of control back to caller
Transfer of data back to caller and restoring caller state

Architecture support for recursive programming
Cache, memory, storage, and network hierarchy trends

Static random-access memory (registers, caches)
Dynamic random-access memory (main memory)
Solid state and hard disk drives (storage)

Locality: How to create illusion of fast access to capacious data
Spatial locality
Temporal locality

Caches: motivation
Hardware caches supports software locality
Software locality exploits hardware caches

16/32

3_recursion.c: Putting it all together to support recursion

Discussion points

▶ Use info stack, info args in GDB to see recursion depth
▶ Difference between compiling with and without -g for debugging

information.
▶ Memory costs of recursion.
▶ Compilers can recognize tail recursive calls to reduce memory use. Enabled

with -foptimize-sibling-calls, -O2, -O3, and -Os.

17/32

Table of contents
Announcements
Procedures, function calls, and support for recursion

Transfer of control to callee
Transfer of data to callee
Transfer of control back to caller
Transfer of data back to caller and restoring caller state

Architecture support for recursive programming
Cache, memory, storage, and network hierarchy trends

Static random-access memory (registers, caches)
Dynamic random-access memory (main memory)
Solid state and hard disk drives (storage)

Locality: How to create illusion of fast access to capacious data
Spatial locality
Temporal locality

Caches: motivation
Hardware caches supports software locality
Software locality exploits hardware caches

18/32

Cache, memory, storage, and network hierarchy trends

▶ Assembly
programming view
of computer: CPU
and memory.

▶ Full view of
computer
architecture and
systems: +caches,
+storage, +network

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds disk
blocks retrieved from
local disks.

Figure: Memory hierarchy. Image credit CS:APP

19/32

Cache, memory, storage, and network hierarchy trends

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

Figure: Widening gap: CPU processing time vs. memory
access time. Image credit CS:APP

Topic of this chapter:

▶ Technology trends
that drive
CPU-memory gap.

▶ How to create
illusion of fast
access to capacious
data.

20/32

Static random-access memory (registers, caches)

▶ SRAM is bistable logic
▶ Access time: 1 to 10 CPU clock

cycles
▶ Implemented in the same transistor

technology as CPUs, so
improvement has matched pace.

Figure: SRAM operating principle. Image
credit Wikimedia

21/32

Dynamic random-access memory (main memory)

▶ Needs refreshing
every 10s of
milliseconds

▶ 8GB typical in
laptop; 1TB on each
ilab machine

▶ Access time: 100
CPU clock cycles

▶ Memory gap:
DRAM
technological
improvement
slower relative to
CPU/SRAM.

Figure: DRAM operating principle. Image credit ocw.mit.edu

22/32

CPU / DRAM main memory interface

Main!
memory!

I/O !
bridge!Bus interface!

ALU!

Register file!

CPU chip!

System bus! Memory bus!

Figure: Memory Bus. Image credit CS:APP

▶ DDR4 bus standard supports 25.6GB/s
transfer rate

Figure: Intel 2020 Gulftown die
shot. Image credit AnandTech

23/32

Solid state and hard disk drives (storage)

Technology

▶ SSD: flash nonvolatile memory stores data as charge.
▶ HDD: magnetic orientation.
▶ Access time: 100K CPU clock cycles

For in-depth on storage, file systems, and operating
systems, take:

▶ CS214 Systems Programming
▶ CS416 Operating Systems Design

Since summer 2021, LCSR (admins of iLab) have moved the storage systems

that supports everyone’s home directories to SSD. https://resources.cs.

rutgers.edu/docs/file-storage/storage-technology-options/

Flash
translation layer

I/O bus

Page 0 Page 1 Page P-1 …
Block 0

… Page 0 Page 1 Page P-1 …
Block B-1

Flash memory

Solid State Disk (SSD)

Requests to read and !
write logical disk blocks!

Figure: SSD. Image credit
CS:APP

Surface 0!
Surface 1!
Surface 2!
Surface 3!
Surface 4!
Surface 5!

Cylinder k

Spindle!

Platter 0!

Platter 1!

Platter 2!

Figure: HDD. Image credit
CS:APP

https://resources.cs.rutgers.edu/docs/file-storage/storage-technology-options/
https://resources.cs.rutgers.edu/docs/file-storage/storage-technology-options/

24/32

I/O interfaces

Main!
memory!

I/O !
bridge! Bus interface!

ALU!

Register file!

CPU!

System bus! Memory bus!

Host bus !
adapter !

(SCSI/SATA)!

Graphics!
adapter!

USB!
controller!

Mouse! Key!
board!

Monitor!

I/O bus! Expansion slots for!
other devices such!
as network adapters!
!

Disk !
controller!

Disk drive!

Solid !
state !
disk!

Figure: I/O Bus. Image credit CS:APP

Storage interfaces

▶ SATA 3.0 interface (6Gb/s
transfer rate) typical

▶ PCIe (15.8 GB/s) becoming
commonplace for SSD

▶ But interface data rate is
rarely the bottleneck.

For in-depth on computer
network layers, take:

▶ CS352 Internet Technology

25/32

Cache, memory, storage, and network hierarchy trends

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

Figure: Widening gap: CPU processing time vs. memory
access time. Image credit CS:APP

Topic of this chapter:

▶ Technology trends
that drive
CPU-memory gap.

▶ How to create
illusion of fast
access to capacious
data.

26/32

Table of contents
Announcements
Procedures, function calls, and support for recursion

Transfer of control to callee
Transfer of data to callee
Transfer of control back to caller
Transfer of data back to caller and restoring caller state

Architecture support for recursive programming
Cache, memory, storage, and network hierarchy trends

Static random-access memory (registers, caches)
Dynamic random-access memory (main memory)
Solid state and hard disk drives (storage)

Locality: How to create illusion of fast access to capacious data
Spatial locality
Temporal locality

Caches: motivation
Hardware caches supports software locality
Software locality exploits hardware caches

27/32

Locality: How to create illusion of fast access to capacious data

From the perspective of memory hierarchy, locality is using the data in at any
particular level more frequently than accessing storage at next slower level.

First, let’s experience the puzzling effect of locality in sumArray.c

▶ sumArrayRows()
▶ sumArrayCols()

Well-written programs maximize locality

▶ Spatial locality
▶ Temporal locality

28/32

Spatial locality

1 double dotProduct (
2 double a[N],
3 double b[N],
4) {
5 double sum = 0.0;
6 for(size_t i=0; i<N; i++){
7 sum += a[i] * b[i];
8 }
9 return sum;

10 }

Spatial locality

▶ Programs tend to access adjacent
data.

▶ Example: stride 1 memory access in
a and b.

29/32

Temporal locality

1 double dotProduct (
2 double a[N],
3 double b[N],
4) {
5 double sum = 0.0;
6 for(size_t i=0; i<N; i++){
7 sum += a[i] * b[i];
8 }
9 return sum;

10 }

Temporal locality

▶ Programs tend to access data over
and over.

▶ Example: sum gets accessed N times
in iteration.

30/32

Table of contents
Announcements
Procedures, function calls, and support for recursion

Transfer of control to callee
Transfer of data to callee
Transfer of control back to caller
Transfer of data back to caller and restoring caller state

Architecture support for recursive programming
Cache, memory, storage, and network hierarchy trends

Static random-access memory (registers, caches)
Dynamic random-access memory (main memory)
Solid state and hard disk drives (storage)

Locality: How to create illusion of fast access to capacious data
Spatial locality
Temporal locality

Caches: motivation
Hardware caches supports software locality
Software locality exploits hardware caches

31/32

CPU / cache / DRAM main memory interface

Main!
memory!

I/O!
bridge!Bus interface!

ALU!

Register file!
CPU chip!

System bus! Memory bus!

Cache !
memories!

Figure: Cache resides on CPU chip close to
register file. Image credit CS:APP

Figure: Intel 2020 Gulftown die shot. Image
credit AnandTech

4! 9! 14! 3!

0! 1! 2! 3!

4! 5! 6! 7!

8! 9! 10! 11!

12! 13! 14! 15!

Larger, slower, cheaper storage!
device at level k+1 is partitioned!
into blocks.!

Smaller, faster, more expensive!
device at level k caches a !
subset of the blocks from level k+1.!

Data are copied between!
levels in block-sized transfer units.!

Level k:!

Level k+1:!

Figure: Cache stores a temporary copy from
the slower main memory. Image credit
CS:APP

32/32

CPU / cache / DRAM main memory interactions

4! 9! 14! 3!

0! 1! 2! 3!

4! 5! 6! 7!

8! 9! 10! 11!

12! 13! 14! 15!

Larger, slower, cheaper storage!
device at level k+1 is partitioned!
into blocks.!

Smaller, faster, more expensive!
device at level k caches a !
subset of the blocks from level k+1.!

Data are copied between!
levels in block-sized transfer units.!

Level k:!

Level k+1:!

Figure: Cache stores a temporary copy from
the slower main memory. Image credit
CS:APP

When CPU loads (LD) from memory

▶ Cache read hit
▶ Cache read miss

When CPU stores (ST) to memory

▶ Cache write hit
▶ Cache write miss

	Announcements
	Procedures, function calls, and support for recursion
	Transfer of control to callee
	Transfer of data to callee
	Transfer of control back to caller
	Transfer of data back to caller and restoring caller state

	Architecture support for recursive programming
	Cache, memory, storage, and network hierarchy trends
	Static random-access memory (registers, caches)
	Dynamic random-access memory (main memory)
	Solid state and hard disk drives (storage)

	Locality: How to create illusion of fast access to capacious data
	Spatial locality
	Temporal locality

	Caches: motivation
	Hardware caches supports software locality
	Software locality exploits hardware caches

