
int a[2][8]
0x100 0x104 0x108 0x10C 0x110 0x114 0x118 0x11C
A B C D E F G H
0x120 0x124 0x128 0x12C 0x120 0x124 0x128 0x12C
I J K L M N O P

Iifif 0 100,4

the
FIFA Ob En

TSIM 0 108,4
06181in

A m'll
B hit

E miss

F hit

G mm load I
t.mil L 0 120 4
I miss erice Ob 0pm
J hit
missense

Ks are

Efen

L 0 100,9
Amir 0600010048 n

9 00 EVIL Fuss evil
10 120

a I
This.it
Can

10
known

D m

L

THIS E
M
F
N
G

I

fully associative cache set associative cache direct mapped cache
s, the number of set index
bits 0 1 2

S=2^s, the number of sets 1 2 4
E-way, the number of
interchangable slots in
each set 4 2 1
b, the number of bits in
the block offset 3 3 3
B=2^b, the number of
bytes in each block 8 8 8
total capacity in bytes
= S * E * B 32 bytes 32 bytes 32 bytes

sumArrayRows total hits
sumArrayRows total misses
sumArrayRows total eviction
sumArrayCols total hits
sumArrayCols total misses
sumArrayCols total eviction

analogous data structure for FIFO, like a queue
a hash table of queues
(assuming FIFO)

hash table using set as
hash

positive attributes

high associativity offers
better support for
temporal locality

least cost in search time
hardware area power
coonsumption

negative attributes

comparing tags for all
ways has high costs in
time, silicon area, power
consumption

strict direct mapping of
memory addresses to
specific sets leads to
conflict misses

9

1/34

The memory hierarchy: Cache placement, replacement, and
write policies

Yipeng Huang

Rutgers University

April 9, 2024

2/34

Table of contents
PA5: Simulating a cache and optimizing programs for caches

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

3/34

PA5: Simulating a cache and optimizing programs for caches

Write a cache simulator
1. fullyAssociative
2. directMapped
3. setAssociative

Optimize some code for better cache performance

1. cacheBlocking
2. cacheOblivious

4/34

PA5: Simulating a cache and optimizing programs for caches

A tour of files in the package
I trace files
I csim-ref

5/34

Table of contents
PA5: Simulating a cache and optimizing programs for caches

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

6/34

Cache placement policy (how to find data at address for read and
write hit)

Several designs for caches
I Fully associative cache
I Direct-mapped cache
I N-way set-associative cache

Cache design options use m-bit
memory addresses differently
I t-bit tag
I s-bit set index
I b-bit block offset

t bits s bits b bits

0m-1

Tag Set index Block offset

Address:

Figure: Memory addresses. Image credit
CS:APP

7/34

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

m-bit memory address
split into:
I t-bit tag
I b-bit block offset

8/34

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

b-bit block offset
I here, b = 3
I The number of bytes

in a block is
B = 2b = 23 = 8

I A block is the
minimum number of
bytes that can be
cached

I Good for capturing
spatial locality, short
strides

9/34

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

t-bit tag
I here,

t = m � b = m � 3
I When CPU wants to

read from or write to
memory, all t-bits in
tag need to match for
read/write hit.

10/34

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Full associativity
I Blocks can go into any

of E ways
I Here, E = 3
I Good for capturing

temporal locality:
cache hits can happen
even with intervening
reads and writes to
other tags.

11/34

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Capacity of cache
I Total capacity of fully

associative cache in
bytes: C = EB = E ⇤ 2b

I Here,
C = E⇤2b = 3⇤23 = 24
bytes

12/34

Fully associative cache

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Strengths
I Blocks can go into any

of E-ways.
I Hit rate is only limited

by total capacity.

Weaknesses
I Searching across all

valid tags is
expensive.

I Figuring out which
block to evict on
read/write miss is
also expensive.

I Requires a lot of
combinational logic.

13/34

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

m-bit memory address
split into:
I t-bit tag
I s-bit set index
I b-bit block offset

14/34

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

b-bit block offset
I here, b = 3
I The number of bytes

in a block is
B = 2b = 23 = 8

I A block is the
minimum number of
bytes that can be
cached

I Good for capturing
spatial locality, short
strides

15/34

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

s-bit set index
I here, s = 2
I The number of sets in

cache is
S = 2s = 22 = 4

I A hash function that
limits exactly where a
block can go

I Good for further
increasing ability to
exploit spatial locality,
short strides

16/34

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

t-bit tag
I here,

t = m�s�b = m�2�3
I When CPU wants to

read from or write to
memory, all t-bits in
tag need to match for
read/write hit.

17/34

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

Direct mapping
I In direct-mapped

cache, blocks can go
into only one of E = 1
way

18/34

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

Capacity of cache
I Total capacity of fully

associative cache in
bytes:
C = SEB = 2s ⇤ E ⇤ 2b

I Here, C = 2s ⇤ E ⇤ 2b =
22 ⇤ 1 ⇤ 23 = 32 bytes

19/34

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

Strengths
I Simple to implement.
I No need to search

across tags.

Weaknesses
I Can lead to surprising

thrashing of cache
with unfortunate
access patterns.

I Unexpected conflict
misses independent of
cache capacity.

20/34

E-way set-associative cache

• • • B–110

• • • B–110

Valid

Valid

Tag

Tag
Set 0:

B = 2b bytes
per cache block

E lines per set

S = 2s sets

t tag bits
per line

1 valid bit
per line

Cache size: C = B x E x S data bytes

• • •

• • • B–110

• • • B–110

Valid

Valid

Tag

Tag
Set 1:

• • •

• • • B–110

• • • B–110

Valid

Valid

Tag

Tag
Set S -1:

• • •
• • •

Figure: Direct-mapped cache. Image credit CS:APP

Strengths
I Blocks can go into any

of E-ways, increases
ability to support
temporal locality,
thereby increasing hit
rate.

I Only need to search
across E tags. Avoids
costly searching
across all valid tags.

I Avoids conflict misses
due to unfortunate
access patterns.

21/34

E-way set-associative cache

• • • B–110

• • • B–110

Valid

Valid

Tag

Tag
Set 0:

B = 2b bytes
per cache block

E lines per set

S = 2s sets

t tag bits
per line

1 valid bit
per line

Cache size: C = B x E x S data bytes

• • •

• • • B–110

• • • B–110

Valid

Valid

Tag

Tag
Set 1:

• • •

• • • B–110

• • • B–110

Valid

Valid

Tag

Tag
Set S -1:

• • •
• • •

Figure: Direct-mapped cache. Image credit CS:APP

Used in practice in, e.g.,
a recent Intel Core i7:
I C = 32KB L1 data cache

per core

I S = 64 = 26 sets/cache
(s = 6 bits)

I E = 8 = 23 ways/set

I B = 64 = 26 bytes/block
(b = 6 bits)

I C = S ⇤ E ⇤ B

I Assuming memory
addresses are m = 48,
then tag size
t = m � s � b =
48 � 6 � 6 = 36 bits.

22/34

E-way set-associative cache

• • • B–110

• • • B–110

Valid

Valid

Tag

Tag
Set 0:

B = 2b bytes
per cache block

E lines per set

S = 2s sets

t tag bits
per line

1 valid bit
per line

Cache size: C = B x E x S data bytes

• • •

• • • B–110

• • • B–110

Valid

Valid

Tag

Tag
Set 1:

• • •

• • • B–110

• • • B–110

Valid

Valid

Tag

Tag
Set S -1:

• • •
• • •

Figure: Direct-mapped cache. Image credit CS:APP

Let’s see textbook slides
for a simulation

23/34

Table of contents
PA5: Simulating a cache and optimizing programs for caches

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

24/34

Cache hits

Memory access is serviced from cache
I Hit rate = Numberofhits

Numberofmemoryaccesses

I Hit time: latency to access cache (4 cycles for L1, 10 cycles for L2)

25/34

Cache misses: metrics

Memory access cannot be serviced from cache
I Miss rate = Numberofmisses

Numberofmemoryaccesses

I Miss penalty (miss time): latency to access next level cache or memory (up to
200 cycles for memory).

I Average memory access time = hit time + miss rate ⇥ miss penalty

26/34

Cache misses: Classification

Compulsory misses
I First access to a block of memory will miss because cache is cold.

Conflict misses
I Multiple blocks map (hash) to the same cache set.
I Fully associative caches have no such conflict misses.

Capacity misses
I Occurs when the set of active cache blocks (working set) is larger than the

cache.
I Direct mapped caches have no such capacity misses.

27/34

Table of contents
PA5: Simulating a cache and optimizing programs for caches

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

28/34

Direct-mapped cache

S = 2s sets

t bits 0…01 100
Address

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Figure: Direct-mapped cache. Image credit CS:APP

No need for
replacement policy
I The number of sets in

cache is
S = 2s = 22 = 4.

I A hash function that
limits exactly where a
block can go.

I In direct-mapped
cache, blocks can go
into only one of E = 1
way.

I No cache replacement
policy is needed.

29/34

Associative caches

t bits 100
Address of int:

tag

match: assume yes = hitvalid? +

block offset

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

0 1 2 7v 3 654tag

E ways

Figure: Fully associative cache. Image credit CS:APP

Needs replacement
policy
I Blocks can go into any

of E ways
I Here, E = 3
I Good for capturing

temporal locality.
I If all

ways/lines/blocks are
occupied, and a cache
miss happens, which
way/line/block will
be the victim and get
evicted for
replacement?

30/34

Cache replacement policies for associative caches

FIFO: First-in, first-out
I Evict the cache line that was placed the longest ago.
I Each cache set essentially becomes limited-capcity queue.

LRU: Least Recently Used
I Evict the cache line that was last accessed longest ago.
I Needs a counter on each cache line, and/or a global counter (e.g., program

counter).

31/34

Table of contents
PA5: Simulating a cache and optimizing programs for caches

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

32/34

Policies for writes from CPU to memory
How to deal with write-hit? How to deal with write-miss?

I Write-through. Simple. Writes update both
cache and memory. Costly memory bus
traffic.

I No-write-allocate. Simple. Write-misses do
not load block into cache. But write-misses
are not mitigated via cache support.

I Write-back. Complex. Writes update only
cache and set a dirty bit; memory updated
only upon eviction. Reduces memory bus
traffic. (For multi-core CPUs, motivates
complex cache coherence protocols)

I Write-allocate. Complex. Write-misses will
load block into cache.

Typical designs:
I Simple: write-through + no-write-allocate.
I Complex: write-back + write-allocate.

33/34

Table of contents
PA5: Simulating a cache and optimizing programs for caches

Cache placement policy (how to find data at address for read and write hit)
Fully associative cache
Direct-mapped cache
Set-associative cache

Cache performance metrics: hits, misses, evictions
Cache hits
Cache misses

Cache replacement policy (how to find space for read and write miss)
Direct-mapped cache need no cache replacement policy
Associative caches need a cache replacement policy (e.g., FIFO, LRU)

Policies for writes from CPU to memory

Multilevel cache hierarchies

34/34

Multilevel cache hierarchies

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

Figure: Intel Core i7 cache hierarchy. Image
credit CS:APP

Small fast caches nested inside large
slow caches

I L1 data and instruction cache: 32KB, 64 set,
8-way associative, 64B block, 4 cycle latency.

I L2 cache: 256KB, 512 set, 8-way associative,
64B block, 10 cycle latency.

I L3 cache: 8MB, 8192 set, 16-way associative,
64B block, 40-75 cycle latency.

Notice how latency cost increases as E-way
associativity increases.

Figure: Intel 2020 Gulftown die shot. Image
credit AnandTech

