# The basics of logic design: Combinational logic 

Yipeng Huang

Rutgers University

April 18, 2024

## Table of contents

## Announcements

## Transistors: The building block of computers

Combinational logic
Basic gates
More-than-2-input gates
Functional completeness
The set of logic gates $\{N O T, A N D, O R\}$ is universal
The NAND gate is universal
The NOR gate is universal
Combinational logic
Decoders
Multiplexers
PA6 Demo code: directMapped read logic

## Announcements

## Class session plan

- Thursday, 4/18 \& Tuesday, 4/23: Diving deeper: Digital logic. (CS:APP Chapter 4.2) (Recommended reading: Patterson \& Hennessy, Computer organization and design, appendix on "The Basics of Logic Design." Available online via Rutgers Libraries)
- Thursday, 4/25: Survey of advanced topics in computer architecture.
- Tuesday, 5/7: 12:00-15:00, SERC 111, closed book, closed notes, no electronic devices, no calculator final exam.


## Table of contents

## Announcements

## Transistors: The building block of computers

Combinational logic
Basic gates
More-than-2-input gates
Functional completeness
The set of logic gates $\{N O T, A N D, O R\}$ is universal
The NAND gate is universal
The NOR gate is universal
Combinational logic
Decoders
Multiplexers
PA6 Demo code: directMapped read logic

## Computer organization

## Layer cake

- Society
- Human beings
- Applications
- Algorithms
- High-level programming languages
- Interpreters
- Low-level programming languages
- Compilers
- Architectures
- Microarchitectures
- Sequential/combinational logic
- Transistors
- Semiconductors
- Materials science


## Why binary

## Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
- Computers determine what to do (instructions)
- ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires


To build logic, we need switches

Transistors


- The first transistor. Developed at Bell Labs, Murray Hill, New Jeresy
- https://www.bell-labs.com/ about/locatiōns/F \#


## MOSFETs

$$
\text { fransistars }\left\{\begin{array}{l}
B J T \\
\text { MOSEETS }
\end{array}\right.
$$

## MOS: Metal-oxide-semiconductor

- A sandwich of conductor-insulator-semiconductor.

FET: Field-effect transistor

- Gate exerts electric field that changes conductivity of semiconductor.


## NMOS, PMOS, CMOS

## PMOS: P-type MOS

- positive gate voltage, acts as open circuit (insulator)
- negative gate voltage, acts as short circuit (conductor)


## NMOS: N-type MOS

- positive gate voltage, acts as short circuit (conductor)
- negative gate voltage, acts as open circuit (insulator)


## CMOS: Complementary MOS

- A combination of NMOS and PMOS to build logical gates such as NOT, AND, OR.
- We'll go to slides posted in supplementary material to see how they work.


## Combinational vs. sequential logic

## Combinational logic

- No internal state nor memory
- Output depends entirely on input
- Examples: NOT, AND, NAND, OR, NOR, XOR, XNOR gates, decoders, multiplexers.

Sequential logic

- Has internal state (memory)
- Output depends on the inputs and also internal state
- Examples: latches, flip-flops, Mealy and Moore machines, registers, pipelines, SRAMs.


## Table of contents

## Announcements

## Transistors: The building block of computers

Combinational logic
Basic gates
More-than-2-input gates
Functional completeness
The set of logic gates $\{N O T, A N D, O R\}$ is universal
The NAND gate is universal
The NOR gate is universal
Combinational logic
Decoders
Multiplexers
PA6 Demo code: directMapped read logic

## NOT gate



Table: Truth table for NOT gate

## AND gate, NAND gate



| $A$ | $B$ | $A B$ |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

Table: Truth table for AND gate


| $A$ | $B$ | $\overline{A B}$ |
| ---: | ---: | :--- |
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

Table: Truth table for NAND gate

## OR gate, NOR gate



| $A$ | $B$ | $A+B$ |
| ---: | ---: | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

Table: Truth table for OR gate


Table: Truth table for NOR gate

## XOR gate, XNOR gate



| $A$ | $B$ | $A \oplus B$ |
| ---: | ---: | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

Table: Truth table for XOR gate


| $A$ | $B$ | $\overline{A \oplus B}$ |
| ---: | ---: | :--- |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

Table: Truth table for XNOR gate

## More-than-2-input AND gate



| $A$ | $B$ | $C$ | $A B C$ |
| ---: | ---: | ---: | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

Table: Truth table for three-input AND gate

## More-than-2-input OR gate



| $A$ | $B$ | $C$ | $A+B+C$ |
| ---: | ---: | ---: | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

Table: Truth table for three-input OR gate

## Table of contents

## Announcements

## Transistors: The building block of computers

Combinational logic
Basic gates
More-than-2-input gates
Functional completeness
The set of logic gates $\{N O T, A N D, O R\}$ is universal
The NAND gate is universal
The NOR gate is universal
Combinational logic
Decoders
Multiplexers
PA6 Demo code: directMapped read logic

The set of logic gates $\{\mathrm{NOT}, \mathrm{AND}, \mathrm{OR}\}$ is universal


Figure: Source: CS:APP

## The set of logic gates $\{N O T, ~ A N D, O R\}$ is universal

- Any truth table can be expressed as sum of products form.
- Write each row with output 1 as a product (minterm).
- Sum the products (minterm).
- Forms a disjunctive normal form (DNF).
- $D=\bar{A} B \bar{C}+A \bar{B} C$
- Always only needs NOT, AND, OR gates.
- Supplementary slides example..
$B \times O R$ ( $A \operatorname{and} C$ )


## Logical Completeness

Can implement ANY truth table with AND, OR, NOT.

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

Sum of products
OR of AND clauses


16

## The set of logic gates $\{N O T, ~ A N D, ~ O R\}$ is universal

- Any truth table can be expressed as sum of products form.
- Write each row with output 1 as a product (minterm).
- Sum the products (minterm).
- Forms a disjunctive normal form (DNF).
- $D=\bar{A} B \bar{C}+A \bar{B} C$
- Always only needs NOT, AND, OR gates.


Figure: Source: CS:APP

- Supplementary slides example...



## The NAND gate is universal

AND gate as two NAND gates

| $A$ | $\bar{A}$ | $A A$ | $\overline{A A}$ |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 |

Table: $\bar{A}=\overline{A A}$
NOT gate as a single NAND gate



| $A$ | $B$ | $A B$ | $\overline{A B}$ | $\overline{\overline{A B}}$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 1 |

Table: $A B=\overline{\overline{\overline{A B}}}$

## The NAND gate is universal

De Morgan's Law

## OR gate as three NAND gates



| $A$ | $B$ | $\bar{A}$ | $\bar{B}$ | $\bar{A} \bar{B}$ | $A+B$ | $\overline{A+B}$ |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 | 1 | 0 |

Table: $\bar{A} \bar{B}=\overline{A+B}$


## The NOR gate is universal

## OR gate as two NOR gates

NOT gate as a single NOR gate


$$
\begin{array}{c|l|ll}
A & \bar{A} & A+A & \overline{A+A} \\
\hline 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}
$$

Table: $\bar{A}=\overline{A+A}$


| $A$ | $B$ | $A+B$ | $\overline{A+B}$ | $\overline{\overline{A+B}}$ |
| ---: | ---: | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 | 1 |

## The NOR gate is universal

De Morgan's Law

| $A$ | $B$ | $\bar{A}$ | $\bar{B}$ | $\bar{A}+\bar{B}$ | $A B$ | $\overline{A B}$ |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 0 | 1 | 0 |

Table: $\bar{A}+\bar{B}=\overline{A B}$

AND gate as three NOR gates


## Combinational vs. sequential logic

## Combinational logic

- No internal state nor memory
- Output depends entirely on input
- Examples: NOT, AND, NAND, OR, NOR, XOR, XNOR gates, decoders, multiplexers.

Sequential logic

- Has internal state (memory)
- Output depends on the inputs and also internal state
- Examples: latches, flip-flops, Mealy and Moore machines, registers, pipelines, SRAMs.


## Table of contents

## Announcements

## Transistors: The building block of computers

Combinational logic
Basic gates
More-than-2-input gates
Functional completeness
The set of logic gates $\{N O T, A N D, O R\}$ is universal
The NAND gate is universal
The NOR gate is universal
Combinational logic
Decoders
Multiplexers
PA6 Demo code: directMapped read logic

## Decoders

Takes $n$－bit input，uses it as an index to enable exactly one of $2^{n}$ outputs Internal design of 1：2 decoder


Figure：Source：Mano \＆Kime

## Decoders

## Hierarchical design of decoder (2:4 decoder)

Takes n-bit input, uses it as an index to enable exactly one of $2^{n}$ outputs


Figure: Source: Mano \& Kime

## Decoders

Decoder (3:8)

Takes n-bit input, uses it as an index to enable exactly one of $2^{n}$ outputs

## Hierarchical design: use small decoders to build bigger decoder



Note: A2 "selects" whether the 2-to-4 linı decoder is active in th top half $\left(\mathrm{A}_{2}=0\right)$ or the bottom ( $\mathrm{A}_{2}=1$ )

Figure: Source: Mano \& Kime

## Multiplexers

Using n－bit selector input， select among one of $2^{n}$ choices


Figure：Source：CS：APP

## Multiplexers

Using n-bit selector input, select among one of $2^{n}$ choices


Figure: Source: CS:APP

## Multiplexers

## Internal mux organization

Using n-bit selector input, select among one of $2^{n}$ choices

Selector Logic (selects which input "flows through")

© 2008 Pearson Education, Inc.
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

## Table of contents

## Announcements

## Transistors: The building block of computers

Combinational logic
Basic gates
More-than-2-input gates
Functional completeness
The set of logic gates $\{N O T, A N D, O R\}$ is universal
The NAND gate is universal
The NOR gate is universal
Combinational logic
Decoders
Multiplexers
PA6 Demo code: directMapped read logic

## directMapped read logic

