Computer Architecture / Security / Quantum / Where to Go Next

Yipeng Huang Rutgers University April 25, 2024

- Instruction level parallelism
- Limitations of instruction level parallelism
- Data level parallelism
- Limitations of data level parallelism
- Thread level parallelism
- Limitations of thread level parallelism
- Accelerators
- Quantum

Synchronization. Clock signals.

(A AND NOT A) should always evaluate to FALSE, need a clock signal to denote when values are valid, and to ignore transients.

The journey of an assembly instruction: pipeline

IF	ID	ΕX	MEM	WB				
i	IF	ID	EX	MEM	WB			
t		IF	ID	ΕX	MEM	WB		
			IF	ID	ΕX	MEM	WB	
				IF	ID	ΕX	MEM	WB

An assembly instruction needs multiple stages of combinational and sequential logic to execute.

At any given moment, several assembly instructions are in-flight.

Image sources: Wikimedia.

The journey of an assembly instruction: pipeline

	IF	ID	ΕX	MEM	WB				
Ļ	i	IF	ID	EX	MEM	WB			
_	t →		IF	ID	ΕX	MEM	WB		
				IF	ID	ΕX	MEM	WB	
					IF	ID	ΕX	MEM	WB

Where does the cache logic in setAssociative.v live?

Where does the logic in binSub.v live?

What is the length of the combinational logic of binSub.v?

What determines the clock speed?

Microarchitectural support for Instruction Set Architectures

Figure 2.33 Floorplan of the Alpha 21264 [Kessler 1999].

Hennessy & Patterson. Computer Architecture: A Quantitative Approach

Instruction Level Parallelism: modern trickery

Figure 3.41 The Intel Core i7 pipeline structure shown with the memory system components. The total pipeline depth is 14 stages, with branch mispredictions costing 17 cycles. There are 48 load and 32 store buffers. The six independent functional units can each begin execution of a ready micro-op in the same cycle.

- Superscalar instruction fetch
- Out-of-order instruction retirement
- Speculative execution

Hennessy & Patterson. Computer Architecture: A Quantitative Approach

- Instruction level parallelism
- Limitations of instruction level parallelism
- Data level parallelism
- Limitations of data level parallelism
- Thread level parallelism
- Limitations of thread level parallelism
- Accelerators
- Quantum

Limitations of microarchitecture trickery: security vulnerabilities

- See Prof. Mark Hill (U. Wisconsin) slides on Meltdown and Spectre
- Lipp, Moritz, et al. "Meltdown: Reading kernel memory from user space." 27th {USENIX} Security Symposium ({USENIX} Security 18). 2018.

- Instruction level parallelism
- Limitations of instruction level parallelism
- Data level parallelism
- Limitations of data level parallelism
- Thread level parallelism
- Limitations of thread level parallelism
- Accelerators
- Quantum

Data Level Parallelism

Figure 4.20 Block diagram of the multithreaded SIMD Processor of a Fermi GPU. Each SIMD Lane has a pipelined floating-point unit, a pipelined integer unit, some logic for dispatching instructions and operands to these units, and a queue for holding results. The four Special Function units (SFUs) calculate functions such as square roots, reciprocals, sines, and cosines.

Hennessy & Patterson. Computer Architecture: A Quantitative Approach

Data Level Parallelism

ZMM0	Y	MMO [XMM0	ZMM1	Y	MM1	XMM1	ST(0)	MM0	ST(1)	MM1			AX RAX	R8B R8W R8D	R8	R12D R12	MSWC	R0	CR4	l
ZMM2	Y	MM2	XMM2	ZMM3	Y	MM3	XMM3	ST(2)	MM2	ST(3)	MM3		вн ВХ ЕВ	SX RBX	R9B R9W R9D	R9	R13D R13	CR1		CR5	
ZMM4	Y	MM4	XMM4	ZMM5	YI	MM5 [XMM5	ST(4)	MM4	ST(5)	MM5		сценСХЕС	XRCX	R10B R10W R10D	R10	N R14D R14	CR2	2	CR6	
ZMM6	Y	MM6	XMM6	ZMM7	YI	MM7 [XMM7	ST(6)	MM6	ST(7)	MM7				R11B R11W R11D	R11 R15B R15V	R15D R15	CR3	3	CR7	
ZMM8	Y	MM8 [XMM8	ZMM9	Y	MM9	XMM9					В	PLBPEBF	RBP			EIP RIP	MXCS	SR	CR8	
ZMM10) <u>Y</u> I	MM10	XMM10	ZMM1 ²	I YI	MM11 [XMM11	CW	FP_IP	FP_DP	FP_C	S	SIL SI ES	I RSI		SP				CR9	
ZMM12	2 YI	MM12	XMM12	ZMM1:	3 YI	MM13 [XMM13	SW												CR10	
ZMM14	Y	MM14	XMM14	ZMM1	5 YI	MM15	XMM15	TW		8-bit reg	gister		32-bit r	egister	80-bit r	egister	256-bit re	egister		CR11	
ZMM16	ZMM17	ZMM18	ZMM19	ZMM20	ZMM21	ZMM22	ZMM23	FP_DS			egister		64-DIT I	egister		register	512-DIt re	egister		CR12	
ZMM24	ZMM25	ZMM26	ZMM27	ZMM28	ZMM29	ZMM30	ZMM31	FP_OPC	FP_DF	FP_IP	(CS	SS	DS	GDTR	IDTR	DR0	DR6		CR13	
												ES	FS	GS	TR	LDTR	DR1	DR7		CR14	
																	DR2	DR8		CR15	
																	DR3	DR9			
																	DR4	DR10	DR	12 D	R14
																	DR5	DR11	DR	13 D	R15

- Instruction level parallelism
- Limitations of instruction level parallelism
- Data level parallelism
- Limitations of data level parallelism
- Thread level parallelism
- Limitations of thread level parallelism
- Accelerators
- Quantum

Dennard Scaling, Moore's Scaling, Power Wall

For a few decades, shrinking transistors drove clock speeds higher.

Dennard Scaling: Shrinking transistors also use less power.

Win-win.

Circa 2005, Dennard Scaling hit physical limitations.

FIGURE 1.15 Clock rate and Power for Intel x86 microprocessors over eight generations and 25 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance. The Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a simpler pipeline with lower clock rates and multiple processors per chip. Copyright © 2009 Elsevier, Inc. All rights reserved.

Patterson & Hennessy. Computer Organization and Design: The Hardware/Software Interface.

Drivers of CPU performance: scaling and architecture

Hennessy & Patterson. Computer Architecture: A Quantitative Approach

With end to Dennard's scaling, the continuation of Moore's law provided parallelism instead

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

- Instruction level parallelism
- Limitations of instruction level parallelism
- Data level parallelism
- Limitations of data level parallelism
- Thread level parallelism
- Limitations of thread level parallelism
- <u>Accelerators</u>
- Quantum

	1940s	1950s	1960s	1970s	1980s	1990s	2000s	2010s	
Analog continuous- time computing	Analog computers for rocket and artillery controllers.	Analog computers for field problems.	1 st transistorized analog computer.	Analog-digital hybrid computers.					
Digital discrete- time computing	Turing's Bomba.	1 st transistorized digital computer.	Moore's law projection for transistor scaling.	Dennard's scaling for transistor power density.	VLSI democratized.	FPGAs introduced.	End of Dennard's scaling. CPUs go multicore.	Cloud FPGAs: Microsoft Catapult. Amazon F1.	
						Heterogenous architectures			
	Stored program computer.	Microprogram ming.	Instruction set architecture.	Reduced instruction set computers.		GPUs introduced.	Nvidia introduces CUDA.	ASICs: Google TPUs. DE Shaw Research Anton.	
Transistor scaling and architectural abstractions drive digital revolution, make analog alternatives irrelevant heterogenous architectures									

Accelerators

- Instruction level parallelism
- Limitations of instruction level parallelism
- Data level parallelism
- Limitations of data level parallelism
- Thread level parallelism
- Limitations of thread level parallelism
- Accelerators
- <u>Quantum</u>

FIGURE 7.2 The number of qubits in superconductor (SC) and trapped ion (TI) quantum computers versus year; note the logarithmic scaling of the vertical axis. Data for trapped ions are shown as squares and for superconducting machines are shown as circles. Approximate average reported two-qubit gate error rates are indicated by color; points with the same color have similar error rates. The dashed gray lines show how the number of qubits would grow if they double every two years starting with one qubit in 2000 and 2009, respectively; the dashed black line indicates a doubling every year beginning with one qubit in 2014. Recent superconductor growth has been close to doubling every year. If this rate continued, 50 qubit machines with less than 5 percent error rates would be reported in 2019. SOURCE: Plotted data obtained from multiple sources [9].

Quantum Computing Progress and Prospects. National Academies Press.

Intel

FIGURE 7.2 The number of qubits in superconductor (SC) and trapped ion (TI) quantum computers versus year; note the logarithmic scaling of the vertical axis. Data for trapped ions are shown as squares and for superconducting machines are shown as circles. Approximate average reported two-qubit gate error rates are indicated by color; points with the same color have similar error rates. The dashed gray lines show how the number of qubits would grow if they double every two years starting with one qubit in 2000 and 2009, respectively; the dashed black line indicates a doubling every year beginning with one qubit in 2014. Recent superconductor growth has been close to doubling every year. If this rate continued, 50 qubit machines with less than 5 percent error rates would be reported in 2019. SOURCE: Plotted data obtained from multiple sources [9].

Quantum Computing Progress and Prospects. National Academies Press.

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)

The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.

Our World in Data How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Gidney and Ekerå. 2019.

Fig. 2. Performance space of quantum computers, measured by the error probability of each entangling gate in the horizontal axis (roughly inversely proportional to the total number of gates that can be executed on a NISQ machine), and the number of qubits in the system in the vertical axis. Blue dotted line approximately demarcates quantum systems that can be simulated using best classical computers, while the green colored region shows where the existing quantum computing systems with verified performance numbers lie (as of September 2018). Purple shaded region indicates computational tasks that accomplish the so-called "quantum supremacy," where the computation carried out by the quantum computer defies classical simulation regardless of its usefulness. The different shapes illustrate resource counts for solving various problems, with solid symbols corresponding to the exact entangling gate counts and number of qubits in NISQ machines, and shaded regions showing approximate gate error requirements and number of qubits for an FT implementation (not pictured are the regions where the error gets too close to the known fault-tolerance thresholds): cyan diamond and shaded region correspond to factoring a 1024-bit number using Shor's algorithm [14], magenta circle and shaded region represent simulation of a 72-spin Heisenberg model [20], and orange shaded region illustrates NF simulation [21].

An Outlook for Quantum Computing. Maslov et al.

A guide to the rest of the CS:APP textbook

CS:APP Chapter	Rutgers CS / ECE course in AY24-25 for further study
4. Processor Architecture	ECE 563 Computer Architecture I
5. Optimizing Program Performance	CS 214 Systems Programming / CS 415 Compilers
7. Linking	CS 415 Compilers
8. Exceptional Control Flow	CS 416 Operating Systems Design
9. Virtual Memory	CS 214 Systems Programming / CS 416 Operating Systems Design
10. System-Level I/O	CS 416 Operating Systems Design
11. Network Programming	CS 352 Internet Technology
12. Concurrent Programming	CS 214 Systems Programming / ECE 451 Parallel & Distributed Computing

https://classes.rutgers.edu//soc/#keyword?keyword=QUANTUM&semester=92024&campus=NB&level=U,G

2024 Fall: ECE 493. Soljanin. Quantum Computing Algorithms. (seniors only). https://emina.flywheelsites.com/teaching/

2025 Spring: Physics 421. Roy. An Introduction to Quantum Computing. https://www.physics.rutgers.edu/ugrad/421/

What my class is about

<u>Graduate seminar</u> on latest developments in <u>quantum computer engineering</u>

What is quantum computer engineering??

- realizing <u>quantum algorithms</u>
- on prototype quantum computers
- —a rapidly growing field!!

Goals of the course:

- explore open-source tools for using quantum computers
- read and discuss recent developments
- build foundation for you to pursue research or to be experts in industry

Preview of the syllabus

- A systems view of quantum computer engineering
- Near-term intermediate-scale quantum algorithms
- Programming frameworks
- Emerging languages and representations
- Claims and counter claims for quantum advantage
- Extracting success
- Prototypes

Very important to help develop next iteration of this course.

<u>https://sirs.ctaar.rutgers.edu/blue</u>