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Synchronization. Clock signals.

evaluate to FALSE, need a clock signal
to denote when values are valid, and

to ignore transients.
Circuit: Voltages over time:
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The journey of an assembly instruction:
pipeline
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At any given moment, several assembly

instructions are in-flight.

Image sources: Wikimedia.




The journey of an assembly instruction:

pipeline

. Instruction Decode Execute
X Memory Access
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Where does the cache logic in

setAssociative.v live?

Where does the logic in binSub.v live?

What is the length of the combinational logic
of binSub.v?

What determines the clock speed?
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Figure 2.33 Floorplan of the Alpha 21264 [Kessler 1999].

Hennessy & Patterson. Computer Architecture: A Quantitative Approach



Instruction Level Parallelism: modern trickery

Figure 3.41 The Intel Core i7 pipeline structure shown with the memory system
components. The total pipeline depth is 14 stages, with branch mispredictions costing
17 cycles. There are 48 load and 32 store buffers. The six independent functional units
can each begin execution of a ready micro-op in the same cycle.

Superscalar instruction fetch
Out-of-order instruction retirement

Speculative execution

Hennessy & Patterson. Computer
Architecture: A Quantitative Approach
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Limitations of microarchitecture trickery:
security vulnerabilities

 See Prof. Mark Hill (U. Wisconsin) slides on Meltdown and Spectre

* Lipp, Moritz, et al. "Meltdown: Reading kernel memory from user
space." 27th {USENIX} Security Symposium ({USENIX} Security 18).

2018.
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Data Level Parallelism

Fermi streaming multiprocessor (SM)

Figure 4.20 Block diagram of the multithreaded SIMD Processor of a Fermi GPU.
Each SIMD Lane has a pipelined floating-point unit, a pipelined integer unit, some logic
for dispatching instructions and operands to these units, and a queue for holding
results. The four Special Function units (SFUs) calculate functions such as square roots,

Hennessy & Patterson. Computer
reclprocals snes,and cosines Architecture: A Quantitative Approach



Data Level Parallelism
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Dennard Scaling, Moore’s Scaling, Power Wall

For a few decades, shrinking transistors 10000 — 120
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FIGURE 1.15 Clock rate and Power for Intel x86 microprocessors over eight generations
and 25 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance.
The Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a
simpler pipeline with lower clock rates and multiple processors per chip. Copyright © 2009 Elsevier, Inc. All
rights reserved.

Patterson & Hennessy. Computer Organization and Design: The Hardware/Software Interface.



Drivers of CPU performance: scaling and
architecture

100,000

Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)

1 O 000 Intel Core 2 Extreme 2 cores, 2.9 GHz
R R T T A T A A AMD Athlon 64’ 28 GHZ ..

’ AMD Athlon, 2.6 GHz_.-" g
Intel Xeon EE 3.2 GHz

Intel VC820 motherboard, 1.0 GHz Pentium Il processor
Professional Workstation XP1000, 667 MHz 21264A

1000 - +veoveeeeeeeereee e Digital AlphaServer. 8400, 6/575,.575 MHz 21264, g il .

JOUO frovererrerseressursintissueinniiniiissiiattessensasitestasontontsd suteseno gt LA e

IBM RS6000/540, 30 MHz,
MIPS M2000, 25 MHz
MIPS M/120, 16.7 MH

10 P LR P PR PP T P T PP PP P PP EPRRPRPRRR

Performance (vs. VAX-11/780)

1.5, VAX-11/785

I I I I I I I I I I

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Hennessy & Patterson. Computer Architecture: A Quantitative Approach



With end to Dennard’s scaling, the continuation of
Moore’s law provided parallelism instead

40 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp
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Transistor scaling and architectural abstractions
drive digital revolution, make analog alternatives irrelevant

Scaling challenges drive
heterogenous architectures

Image sources: AnalogMuseum.org, ComputerHistory.org




Accelerators
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Quantum chemistry
& high energy physics
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FIGURE 7.2 The number of qubits in superconductor (SC) and trapped ion (TI) quantum computers
versus year; note the logarithmic scaling of the vertical axis. Data for trapped ions are shown as squares
and for superconducting machines are shown as circles. Approximate average reported two-qubit gate
error rates are indicated by color; points with the same color have similar error rates. The dashed gray
lines show how the number of qubits would grow if they double every two years starting with one qubit in
2000 and 2009, respectively; the dashed black line indicates a doubling every year beginning with one
qubit in 2014. Recent superconductor growth has been close to doubling every year. If this rate continued,
50 qubit machines with less than 5 percent error rates would be reported in 2019. SOURCE: Plotted data
obtained from multiple sources [9].

Quantum Computing Progress and Prospects. National Academies Press.



LOG, OF THE NUMBER OF
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FIGURE 7.2 The number of qubits in superconductor (SC) and trapped ion (TI) quantum computers
versus year; note the logarithmic scaling of the vertical axis. Data for trapped ions are shown as squares
and for superconducting machines are shown as circles. Approximate average reported two-qubit gate
error rates are indicated by color; points with the same color have similar error rates. The dashed gray
lines show how the number of qubits would grow if they double every two years starting with one qubit in
2000 and 2009, respectively; the dashed black line indicates a doubling every year beginning with one
qubit in 2014. Recent superconductor growth has been close to doubling every year. If this rate continued,
50 qubit machines with less than 5 percent error rates would be reported in 2019. SOURCE: Plotted data
obtained from multiple sources [9].

Quantum Computing Progress and Prospects. National Academies Press.
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Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
linked to Moore's law.
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Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)

The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.
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Fig. 2. Performance space of quantum computers, measured by the error probability of each entangling gate in the horizontal axis
(roughly inversely proportional to the total number of gates that can be executed on a NISQ machine), and the number of qubits in the
system in the vertical axis. Blue dotted line approximately demarcates quantum systems that can be simulated using best classical
computers, while the green colored region shows where the existing quantum computing systems with verified performance numbers lie

(as of September 2018). Purple shaded region indicates computational tasks that accomplish the so-called “quantum supremacy,” where the
computation carried out by the quantum computer defies classical simulation regardless of its usefulness. The different shapes illustrate
resource counts for solving various problems, with solid symbols corresponding to the exact entangling gate counts and number of qubits in
NISQ machines, and shaded regions showing approximate gate error requirements and number of qubits for an FT implementation (not
pictured are the regions where the error gets too close to the known fault-tolerance thresholds): cyan diamond and shaded region
correspond to factoring a 1024-bit number using Shor’s algorithm [14], magenta circle and shaded region represent simulation of a 72-spin

Heisenberg model [20], and orange shaded region illustrates NF simulation [21].

An Outlook for Quantum Computing. Maslov et al.



A guide to the rest of the CS:APP textbook
Rutgers CS / ECE course in AY24-25 for further study

4. Processor Architecture ECE 563 Computer Architecture |

5. Optimizing Program Performance CS 214 Systems Programming / CS 415 Compilers

7. Linking CS 415 Compilers

8. Exceptional Control Flow CS 416 Operating Systems Design

9. Virtual Memory CS 214 Systems Programming / CS 416 Operating Systems Design

10. System-Level I/O CS 416 Operating Systems Design

11. Network Programming CS 352 Internet Technology

12. Concurrent Programming CS 214 Systems Programming / ECE 451 Parallel & Distributed Computing

https://classes.rutgers.edu//soc/#keyword?keyword=QUANTUM&semester=92024&campus=NB&level=U,G

2024 Fall: ECE 493. Soljanin. Quantum Computing Algorithms. (seniors only).
https://emina.flywheelsites.com/teaching/

2025 Spring: Physics 421. Roy. An Introduction to Quantum Computing.
https://www.physics.rutgers.edu/ugrad/421/
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What my class is about

Graduate seminar on latest developments in
quantum computer engineering

What is qguantum computer engineering??
* realizing guantum algorithms

* on prototype quantum computers

—a rapidly growing field!!

Goals of the course:
» explore open-source tools for using quantum computers
* read and discuss recent developments

* build foundation for you to pursue research
or to be experts in industry




Preview of the syllabus

* A systems view of quantum computer engineering
* Near-term intermediate-scale quantum algorithms
* Programming frameworks

* Emerging languages and representations

e Claims and counter claims for qguantum advantage
* Extracting success

* Prototypes



Very important to help develop next iteration
of this course.

ehttps://sirs.ctaar.rutgers.edu/blue
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