Abstract

Quantum computers have novel applications in cryptography and simulation of materials but currently suffer from considerable noise.

Our research studies the error-correcting capabilities of qudits, the generalization of a qubit, through stabilizer **codes.** Such codes are powerful yet efficiently simulable via **stabilizer circuit simulators** on classical hardware.

Until now, no qudit simulator exists despite the ubiquity of stabilizer codes and the need to benchmark different constructions under various system-scale loads.

We introduce the first qudit stabilizer circuit simulator capable of simulating qudits of prime dimension.

The difficulty of qudit simulation

Qubits have 2 complex values while qudits have *d* complex values. These vectors represent the state $|\psi\rangle$ of the system.

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}_{n=1}$$

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}_{n=1}$$

 $\rightarrow 2^n$, 3^n , d^n complex numbers

- Representing *n* qudits leads to an exponential representation
- States $|\psi\rangle$ can be changed by multiplying the state with a $d^n \times d^n$ matrix \hat{O} called an **operator** or **quantum gate.**

Why is simulating quantum computing hard?

n d	2	4	8	16
2	128 B	2 kB	512 kB	32 GB
3	648 B	51.26 kB	328.42 MB	13.17 P
5	4.88 kB	2.98 MB	1.11 TB	157.77 2
7	51.26 kB	328.42 MB	241.8 TB	7.14 RE

Figure 1: RAM for single precision $d^n \times d^n$ matrix ($2 \cdot 4d^{2n}$ bytes)

These are huge matrices. But it turns out, we can efficiently simulate a subset of states, stabilizer states.

Background on stabilizer states

- **Stabilizer states:** the set of states one can reach by applying any sequence of quantum gates from $\{H, P, CNOT\}$ to state $|0\rangle$. The gates are called **Clifford** gates.
- Every *n*-qubit state can be represented by a binary table called a **tableau**. The celebrated **Gottesman**-**Knill theorem** demonstrates how tracking the quantum state with a tableau is $O(n^2)$ when using only Clifford gates.
- Our work extends the binary tableau to an integer tableau for *n*-qudit stabilizer states.

Simulating Quantum Computing with Stabilizers Beyond Qubits

Steven Nguyen, Anika Kumar, Adeeb Kabir Faculty Advisor: Yipeng Huang

Visualizing stabilizer states for a single qubit

Wait what's the Bloch sphere?

- Visualizes transformation of complex values to rotations on a sphere.
- The closer you are to $|0\rangle$ or $|1\rangle$, the more likely you are to measure them.
- Stabilizer codes essentially "round" the state $|\psi\rangle$ to a stabilizer state, the red dots on the sphere
- Clifford gates can only move you between the red dots

Example simulation of the qutrit Bell's state

Applying the Quantum Circuit

 ∇

- The stabilizers are rows (3) and (4), but we also track "destabilizers" (1) and (2) to speed up the program, shown in the first column.
- Stabilizers keep $|\psi\rangle$ on the same point
- Destabilizers move $|\psi\rangle$ to the opposite point (ex. north \rightarrow south pole).
- In the Tableau, we update the destabilizers and stabilizers according to the Clifford update rules.

Measuring the qudits in computational basis $(|0\rangle, |1\rangle, |2\rangle)$

- Tableau already has a single stabilizer (3) which doesn't commute with the measurement $Z \otimes I$ so we can directly measure qudit 1.
- We obtain a random eigenvalue $\{1, \omega, \omega^2\}$ which corresponds to $\{|0\rangle, |1\rangle, |2\rangle\}$ respectively. We then replace XX with $Z \otimes I$ multiplied by the negative of the measurement outcome.

	Measured $+1 \rightarrow 0\rangle$	Measured ω -
1	$X^2 X^2$	$X^2 X^2$
2	IX	IX
3	ZI	$\omega^{-1}ZI$
4	Z^2Z	Z^2Z

Figure 5: Tableau after measuring first qudit

Final step is measuring I \otimes Z, the second qudit, which requires multiplying (3) and (4) together since destabilizers (1) and (2) contain X on qudit 2. This gives us the correlated value we expect as the second qubit is always equal to the first.

Figure 2: Bloch Sphere with random state $|\psi\rangle$ and Pauli stabilizers states plotted as red points

Clifford update rules $X \rightarrow Z$ $X \to XZ$ $Z \to X^{-1}$ $Z \rightarrow Z$

SUM				
$X \bigotimes I \to X \bigotimes X$				
$I \bigotimes X \to I \bigotimes X$				
$Z \bigotimes I \to Z \bigotimes I$				
$I \otimes Z \to Z^{-1} \otimes Z$				

Figure 3: Conjugation table for R, P, SUM whose combinations produce every Clifford gate

Tableau

1	$X \otimes I$	$Z \otimes I$	$Z \otimes I$
2	$I \bigotimes X$	$I \otimes X$	$I \otimes X$
3	$Z \otimes I$	$X^2 \otimes I$	$X^2 \otimes X^2$
4	$I \otimes Z$	$I \otimes Z$	$Z^{2\otimes}Z$
	Initial 100	Annly R	Apply SUM

Figure 4: Tracking Tableau for Qutrit Bell State Circuit

 $\rightarrow |1\rangle$ Measured $\omega^2 \rightarrow |2\rangle$ $X^2 X^2$ IX $\omega^{-2}ZI$ Z^2

- By tracking additional operators alongside stabilizers, we avoid matrix inversion during measurement
- We also showed that tableau operations for the generalized Pauli stabilizers become integer arithmetic modulo d for prime d > 2, instead of bitwise operations used in d = 2.

- Tested on circuits of 100,000 random gates consisting of 40% SUM, 30% R, 30% P gates
- Performance is polynomial in qudit count compared to statevector simulation's exponential performance
- Note that the tableau performance is independent of the qudit dimension

- Move from a standalone Python implementation to integrating with an existing stabilizer simulator such as Stim, QuantumClifford.jl, or even a more general quantum computing simulation platform like Qiskit and Cirq.
- Leverage the above platforms' mature and extensive noise profiling tools for thorough error-correction benchmarking and empirical study.
- Publicize the tool as a contribution toward the growing landscape of practical qudit research from theoretical study to concrete applications.

10.1016/s0960-0779(98)00218-5. 8113/47/30/305303.

The key trick

Scalability of our simulator

Future Direction

References

- Daniel Gottesman. 1999. Fault-Tolerant Quantum Computation with Higher-Dimensional Systems. Chaos, Solitons, amp; Fractals, 10(10): p.1749-1758, doi:
- Scott Aaronson and Daniel Gottesman. 2004. Improved simulation of stabilizer circuits. Physical Review A 70(5), p. 052328, doi:10.1103/PhysRevA.70.052328. Farinholt, J. M. 2014. An ideal characterization of the Clifford operators. Journal of Physics A: Mathematical and Theoretical, 47, 30, p. 305303, doi:10.1088/1751-