The Approximation of Density Matrices

Zirui Li, Yipeng Huang

Tensor Sparsity Analysis

- We plot the tensor's sorted value for 3 different types of circuits under noise-free and noisy environment.

Noise-free

Sparse Tensor Performance Analysis

- Assume we have a density matrix ρ representing an N

 qubit state below are some common quantum operations:- unitary gate: $\rho^{*}=U \rho U^{+}$
measure: $\langle A\rangle=\operatorname{tr}(A \rho)$;
- tensor product: $\rho^{*}=\rho \otimes \rho^{\prime}$, also called Kronecker product. ρ is a matrix of $2^{N} \times 2^{N}$ and ρ^{\prime} is a matrix of $2^{M} \times 2^{M}, \rho^{*}$ is a matrix of $2^{N+M} \times 2^{N+M}$;
- partial trace: $\operatorname{tr}_{\rho_{4}}\left(\rho_{3} \otimes \rho_{4}\right)=\rho_{3}$, Partial trace is like the inverse of tensor product. In quantum computing, it means disentanglement brought by measurement.
- For tensor of size K, the sparsity is usually $\frac{\sqrt{ } K}{K}$. The time complexity for each operation are listed below:

	unitary gate	measure	tensor product	partial trace
normal tensor	$2^{2 N}$	$2^{2 N}$	$2^{2 N+2 M}$	$2^{2 N+M}$
sparse tensor	2^{N}	$2^{N} N$	2^{N+M}	2^{N+M}

$C_{i k}=\sum_{j} A_{i j} B_{j k}$
Density matrix of the Bell state:
$\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \frac{1}{\sqrt{2}}(\langle 00|+\langle 11|)$
$\begin{array}{cc}\text { Otherwise } & 0 \\ 0\end{array}$
How to decompose density matrix to tensor?

- Paulistrings: $\left\{P S_{1}, P S_{2}, \cdots, P S_{4^{n}}\right\}=\{I, X, Y, Z\}^{\otimes n}$
- Density matrix ρ is a $2^{n} \times 2^{n}$ Hermitian Matrix.
- Decomposition of density matrix ρ :
$\rho=\sum_{i=1}^{4^{n}}\left(a_{i} * P S_{i}\right), a_{i} \in[-1,1], \quad a_{i}=\operatorname{tr}\left(\rho \cdot P S_{i}\right)$.

Future Direction

(1) Apply a sparse tensor contraction framework to show the performance gap in real experiments.
(2) Analyze the tensor sparsity on a more complex noisy environment, like introducing crosstalk noise or test it on real quantum computer.
(3) Compare the approximation idea with other approximation methods such as SVD, QR decomposition from Nvidia cuQuantum.

References

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010.
D. Gottesman, "The heisenberg representation of quantum computers,"1998.
Tang, W., Tomesh, T., Suchara, M., Larson, J., \& Martonosi, M. (2021, March 19). CUTQC: Using small quantum computers for large quantum circuit evaluations. arXiv.org. https://arxiv.org/abs/2012.02333

RUTGERS

