

UTGERS

The Approximation of Density Matrices

Zirui Li, Yipeng Huang

operations: - unitary ga - measure:

normal tensor sparse tensor

• Assume we have a density matrix ρ representing an N qubit state below are some common quantum

ate:
$$\rho^* = U\rho U^*$$
;

$$: \langle A \rangle = tr(A\rho);$$

- tensor product: $\rho^* = \rho \otimes \rho'$, also called Kronecker product. ρ is a matrix of $2^N \times 2^N$ and ρ' is a matrix of $2^M \times 2^M$, ρ^* is a matrix of $2^{N+M} \times 2^{N+M}$;

- partial trace: $tr_{\rho_4}(\rho_3 \otimes \rho_4) = \rho_3$, Partial trace is like the inverse of tensor product. In quantum computing, it means disentanglement brought by measurement.

• For tensor of size K, the sparsity is usually $\frac{\sqrt{K}}{\kappa}$. The time complexity for each operation are listed below:

unitary gate	measure	tensor product	partial trace
2 ²	2 ²	2^{2N+2M}	2 ^{2N+M}
2 ^{<i>N</i>}	2 ^{<i>N</i>} <i>N</i>	2 ^{<i>N</i>+<i>M</i>}	2 ^{<i>N</i>+<i>M</i>}

2010.

- (1) Apply a sparse tensor contraction framework to show the performance gap in real experiments.
- (2) Analyze the tensor sparsity on a more complex noisy environment, like introducing crosstalk noise or test it on real quantum computer.
- (3) Compare the approximation idea with other
- approximation methods such as SVD, QR decomposition from Nvidia cuQuantum.

References

- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press,
- D. Gottesman, "The heisenberg representation of quantum computers,"1998.
- Tang, W., Tomesh, T., Suchara, M., Larson, J., & Martonosi, M. (2021, March 19). CUTQC: Using small quantum computers for large quantum circuit evaluations. arXiv.org. https://arxiv.org/abs/2012.02333