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Circuit Running:
Deploy the subcircuit 
on different devices. Quantum 

Processor
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q0 m1 m2 value

I I I 0.125

⋮ ⋮ ⋮ ⋮
Z I X 0.2

⋮ ⋮ ⋮ ⋮

m1 m2 q1 q2 q3 value

I I I I I 0.125

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
I X Z I Y 0.12

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Tensor 1 Tensor 2

Postprocessing: contract tensor1 and tensor2

Analysis on Density 
Matrices:
1) Noise-free density 
matrices:
     · Tensors are sparse!
2) Noisy density matrices:

· Approximate by 
truncating the small 
values. Tensors are still 
sparse.

We can apply sparse 
tensor contraction to 
save time and memory!

[ASPLOS’ 21] CutQC   Wei Tang et al.
|0⟩
|0⟩

𝐻
𝑋

|0⟩ 𝐻 Measure

|0⟩ 𝑋
𝐻Initialize

Subcircuit 1
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The density matrix for subcircuit 1 is:
1
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+1 2 +1 2

=
1
2
𝐼 +

1
2
𝑋

denote the cutting point as m The tensor 
for subcircuit1 is:

m value
I 0.5
X 0.5
Y 0
Z 0

• After cut, we need to initialize 4 different state for m: 0 , 1 , + , |𝑖⟩.
    • Define 𝑓(𝑚) as the density matrix output given initial state 𝑚.

   ① When initial state is 0 ,𝑓(𝑚 = 0 ⟨0|) = 𝑓(𝑚 = !
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   ② When initial state is 1 ,𝑓(𝑚 = 1 ⟨1|) = 𝑓(𝑚 = !
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   ③ When initial state is + ,𝑓(𝑚 = + ⟨+|) = 𝑓(𝑚 = !
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④ When initial state is 𝑖 ,𝑓(𝑚 = 𝑖 ⟨𝑖|) = 𝑓(𝑚 = !
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• As 𝑓(𝑚) is a linear function, we can deduce the following:
 ⑤ 𝑓(𝑚 = 𝐼) = 𝑓(𝑚 = '

( 𝐼 +
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(𝑍) +𝑓(𝑚 = '

( 𝐼 −
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• With⑤⑥⑦⑧, we can build the tensor for subcircuit2 as Tensor 2. 

Tensor 1

m q0 q1 valu
e

I I I 0.5
I Z Z 0.5
X X X 0.5
X Y Y -0.5
Y Y X 0.5
Y X Y 0.5
Z I Z 0.5
Z Z I 0.5

otherwise 0

Tensor contraction example:
• Tensor A has variables i, j;
• Tensor B has variables j, k;
• Contract A and B, we eliminate the 

common variable j and get C with 
variables I, k;

Let’s contract Tensor 1 and Tensor 2:
• Eliminate the common variable m.
• We get the tensor of the Bell state.

q0 q1 value
I I 0.25
X X 0.25
Y Y -0.25
Z Z 0.25

0therwise 0

Tensor of the Bell state

Density matrix of the Bell state:
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match!

How to decompose density matrix to tensor?
• Paulistrings: {𝑃𝑆!, 𝑃𝑆#, ⋯, 𝑃𝑆"!}= 𝐼, 𝑋, 𝑌, 𝑍 ⊗%

• Density matrix ρ is a 2%×2% Hermitian Matrix.
• Decomposition of density matrix ρ:

 ρ = ∑&'!"! 𝑎& ∗ 𝑃𝑆& , 𝑎& ∈ [−1, 1],	 𝑎& = 𝑡𝑟 𝜌 ⋅ 𝑃𝑆& .
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• We plot the tensor’s sorted value for 3 different types of circuits under noise-free and noisy environment.

Sparse Tensor Performance Analysis
• Assume we have a density matrix 𝜌 representing an 𝑁 
qubit state below are some common quantum 
operations:
 - unitary gate: 𝜌∗ = 𝑈𝜌𝑈†;
 - measure: 𝐴 = 𝑡𝑟 𝐴𝜌 ;
 - tensor product: 𝜌∗ = 𝜌⊗ 𝜌′, also called Kronecker
product. 𝜌 is a matrix of 2"×2" and 𝜌′ is a matrix of 
2#×2#, 𝜌∗ is a matrix of 2"$#×2"$#;
 - partial trace: 𝑡𝑟%! 𝜌&⊗𝜌' = 𝜌&, Partial trace is
like the inverse of tensor product. In quantum computing, 
it means disentanglement brought by measurement.

• For tensor of size 𝐾, the sparsity is usually √)
)

. The time 
complexity for each operation are listed below:

unitary
gate measure tensor

product
partial
trace

normal 
tensor 2!" 2!" 2!"#!$ 2!"#$

sparse 
tensor 2" 2"𝑁 2"#$ 2"#$

(1) Apply a sparse tensor contraction framework to show 
the performance gap in real experiments.
 (2) Analyze the tensor sparsity on a more complex noisy 
environment, like introducing crosstalk noise or test it on 
real quantum computer.
 (3) Compare the approximation idea with other 
approximation methods such as SVD, QR decomposition 
from Nvidia cuQuantum.
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