Accessing ilab, writing, compiling, and running your first C program

In-person lecture for Thursday, September 4 is canceled.

Please watch the pre-recorded session here:

https://www.youtube.com/watch?v=SPzHF3YqUNw

Yipeng Huang

Rutgers University

September 4, 2025

Table of contents

Announcements

Accessing iLab Linux machines

Why use Linux?

Key steps to get going

Accessing the programming assignments

Why study C?

rootFinder: A program that prints square roots if integer

Program structure

Opening a file

Reading characters from a file

Control flow

Printing to command line

Compiling and running your program

Announcements

Accessing materials

- ► Class canvas: https://rutgers.instructure.com/courses/355196
- Most of the time, materials are on the Modules page
- Long range syllabus linked from Canvas: https://yipenghuang.com/teaching/2025-fall-211/

Recitations

- ► Recitations start Tuesday, 9/9.
- More information here:

```
https://rutgers.instructure.com/courses/355196/pages/recitation-and-office-hour-information?module_item_id= 12376605
```

▶ Review the material and get help on the programming assignments.

Table of contents

Announcements

Accessing iLab Linux machines

Why use Linux?

Key steps to get going

Accessing the programming assignments

Why study C?

rootFinder: A program that prints square roots if integer

Program structure

Opening a file

Reading characters from a file

Control flow

Printing to command line

Compiling and running your program

Why use Linux?

Do you have Linux? Trick question...

Why use Linux?

- Stable
- Open source
- ► Flexible: all form factors (wearables, IoT, Raspberry Pi, Roku, Android, laptops, iLab, web hosting, warehouse-scale datacenters)
- ► A critical piece of infrastructure for practicing computer science

Key steps to get going

- 1. Activate account: https://services.cs.rutgers.edu/accounts/
- 2. Familiarize yourself with CS department infrastructure: https://resources.cs.rutgers.edu/docs/new-users/beginners-info/
- 3. Use what you are familiar with to log onto iLab remotely. Command line: Windows command line, macOS, terminal, PuTTy. Graphical: X2Go... https:
 - //resources.cs.rutgers.edu/docs/other/working-at-home/
- 4. Use what you are familiar with to move files. SCP, Filezilla, Cyberduck... https://resources.cs.rutgers.edu/docs/file-storage/accessing-files-remotely/
- 5. Use what you are familiar with to edit files. Vim, Emacs, other text editors, VS Code...

Table of contents

Announcements

Accessing iLab Linux machines

Why use Linux?

Key steps to get going

Accessing the programming assignments

Why study C?

rootFinder: A program that prints square roots if integer

Program structure

Opening a file

Reading characters from a file

Control flow

Printing to command line

Compiling and running your program

Accessing the programming assignments

- Canvas: https://rutgers.instructure.com/courses/355196/ assignments/3779232?module_item_id=12376634
- 2. GitHub: https://github.com/yipenghuang0302/2025_1f_211
- 3. Cloning a repository
- 4. git: version control tool; interfaces with github.com

Preview of the plan for programming assignments

- 1. PA0, 1% of course grade, 10 day work time
- 2. PA1, 4% of course grade, two week work time
- 3. PA2, 10% of course grade, two week work time
- 4. PA3, 10% of course grade, two week work time
- 5. PA4, 10% of course grade, two week work time
- 6. PA5, 10% of course grade, two and half week work time
- 7. PA6, 10% of course grade, two week work time

Why study C?

C is fast

- C is close to the machine: directly manipulate memory
- ► C is compiled
- C is strongly typed

C is influential

- C is old
- ► C has a relatively short specification
- ▶ Influenced Java, Python, C++, and most major programming languages
- https://www.tiobe.com/tiobe-index/

See one, do one, teach one

To practice programming, you can...

- ▶ Read about it from a book (e.g., Modern C).
- Listen about it from someone talking about concepts (e.g., lecture slides in Supplementary Reading).
- ▶ Watch someone else program.
- Practice it.
- Explain / teach it to a friend.

Table of contents

Announcements

Accessing iLab Linux machines

Why use Linux?

Key steps to get going

Accessing the programming assignments

Why study C?

rootFinder: A program that prints square roots if integer

Program structure

Opening a file

Reading characters from a file

Control flow

Printing to command line

Compiling and running your program

rootFinder: A program that prints square roots if integer

- ▶ Headers
- Command line arguments
- Opening files
- Reading from files
- printf and format specifiers
- ► EXIT_SUCCESS

Including headers

- ▶ #include <stdio.h>
- #include <stdlib.h>
- #include <stdbool.h>
- #include <math.h>

Command line arguments: First encounter with pointers

What is char* argv[]

Figure: Image credit: http://www.csc.villanova.edu/~mdamian

In C, Strings, char*, and char[] are all the same

- char greeting[6] = {'H','e','l','l','o','\0'};
- char greeting[] = "Hello";

Opening a file

The mode in FILE *fopen(const char *filename, const char
*mode)

- "r": read from the file
- ► "w": write, starting at the beginning of the file
- ▶ "a": write, starting at the end of the file (append)

Reading characters from a file

- ▶ int fgetc(FILE *stream)
- char *fgets(char *str, int n, FILE *stream)
- ▶ int fscanf(FILE *stream, const char *format, ...)

Control flow

- Conditionals
- ► Loops
- break;
- continue;

Printing to command line

The format string in printf (char* format, args)

Format specifiers we care about now:

- ▶ %d: integer
- ▶ %ld: long integer
- ▶ %f: float
- ▶ %c: character
- ► %s: string
- ▶ %p: pointer

Comprehensive documentation:

https://cplusplus.com/reference/cstdio/printf/

Compiling and running your program

How does a program end up on your computer?

```
gcc -Wall -Werror -fsanitize=address -std=c99 -o
rootFinder rootFinder.c -lm
```

- ▶ gcc: GNU C Compiler
- ► -Wall -Werror: Enable helpful warnings.
- ▶ -fsanitize=address: Enable memory checking.
- ► -std=c99: **Set** *C* **standard version number**.
- ▶ -o rootFinder: Output binary.
- ▶ rootFinder.c: Source file.
- ▶ -lm: Link the math library implementation.

Compiling and running your program

How does a program end up on your computer?

How a Makefile works

▶ \$@: target file name

> \$<: first prerequisite

▶ \$^: all prerequisites

Assignment infrastructure for this course

Navigating the 2025_1f_211/ assignments directory

- autograder.py
- ► tests/: test cases
- answers/: expected answers
- Every assignment part has several fixed test cases for development, several randomized test cases for validation.
- assignment_autograder.py
- ▶ tar cvf pa0.tar .