
1/16

C Programming: Pointers, Arrays, Memory

Yipeng Huang

Rutgers University

September 11, 2025

2/16

Table of contents

Announcements
Canvas timed quiz 1 and programming assignment 1

pointers.c: A lab exercise for pointers, arrays, and memory
Lesson 1: What are pointers?
Lesson 2: Dereferencing pointers with *
Lesson 3: The integer datatype uses four bytes
Lesson 4: Printing each byte of an integer
Lesson 5: Pointers are just variables that live in memory
Lesson 6: Arrays are just places in memory
Lesson 7: Passing-by-value
Lesson 8: Passing-by-reference
Lesson 9: Passing an array leads to passing-by-reference
Lesson 10: How the stack works; recursion example

3/16

Canvas timed quiz 1 and programming assignment 1

Quiz 1

1. Spanning Tuesday 9/9 - Wednesday 9/17.
2. 60 minutes.
3. Two tries.
4. Linux, some C.
5. Reviews recent concepts that would be fair game for exams.

Programming assignment 1

1. Due Friday 9/26.
2. Arrays, pointers, recursion, and algorithms.

4/16

Table of contents

Announcements
Canvas timed quiz 1 and programming assignment 1

pointers.c: A lab exercise for pointers, arrays, and memory
Lesson 1: What are pointers?
Lesson 2: Dereferencing pointers with *
Lesson 3: The integer datatype uses four bytes
Lesson 4: Printing each byte of an integer
Lesson 5: Pointers are just variables that live in memory
Lesson 6: Arrays are just places in memory
Lesson 7: Passing-by-value
Lesson 8: Passing-by-reference
Lesson 9: Passing an array leads to passing-by-reference
Lesson 10: How the stack works; recursion example

5/16

Why pointers?

Pointers underlie almost every programming language feature:

▶ arrays
▶ pass-by-reference
▶ data structures

Vital reason why C is a low-level, high-performance, systems-oriented
programming language (why we use it for this class, computer architecture).

6/16

Lesson 1: What are pointers?

▶ Pointers are numbers
▶ The unary operator & gives the “address of a variable”.
▶ how big is a pointer? 32-bit or 64-bit machine?
▶ Pointers are typed

7/16

Lesson 2: Dereferencing pointers with *

*pointer: dereferencing operator: variable in that address

8/16

int* ptr and int *ptr

No difference between int* ptr and int *ptr

▶ int* ptr emphasizes that ptr is int* type
▶ int *ptr emphasizes that when you dereference ptr, you get a variable of

type int

9/16

Lesson 3: The integer datatype uses four bytes

▶ Memory is an array of addressable bytes
▶ Variables are simply names for contiguous sequences of bytes

10/16

Lesson 4: Printing each byte of an integer

▶ Most significant byte (MSB) first → big endian
▶ Least significant byte (LSB) first → little endian

Which one is true for the ilab machine?

11/16

Lesson 5: Pointers are just variables that live in memory

▶ Pointers to pointer

12/16

Lesson 6: Arrays are just places in memory

▶ name of array points to first element
▶ malloc() and free()

▶ stack and heap
▶ using pointers instead of arrays
▶ pointer arithmetic
▶ char* argv[] and char** argv are the same thing

13/16

Lesson 7: Passing-by-value

Using stack and heap picture, understand how pass by value and pass by
reference are different.
▶ C functions are entirely pass-by-value
▶ swap_pass_by_values() doesn’t actually succeed in swapping two

variables.

14/16

Lesson 8: Passing-by-reference

Using stack and heap picture, understand how pass by value and pass by
reference are different.
▶ You can create the illusion of pass-by-reference by passing pointers
▶ swap_pass_by_references() does succeed in swapping two variables.

15/16

Lesson 9: Passing an array leads to passing-by-reference

16/16

Lesson 10: How the stack works; recursion example

Low addresses Global / static data

Heap grows downward Dynamic memory allocation

High addresses Stack grows upward Local variables, parameters

Table: Memory structure

	Announcements
	Canvas timed quiz 1 and programming assignment 1

	pointers.c: A lab exercise for pointers, arrays, and memory
	Lesson 1: What are pointers?
	Lesson 2: Dereferencing pointers with *
	Lesson 3: The integer datatype uses four bytes
	Lesson 4: Printing each byte of an integer
	Lesson 5: Pointers are just variables that live in memory
	Lesson 6: Arrays are just places in memory
	Lesson 7: Passing-by-value
	Lesson 8: Passing-by-reference
	Lesson 9: Passing an array leads to passing-by-reference
	Lesson 10: How the stack works; recursion example

