C Programming: Pointers, Arrays, Memory

Yipeng Huang
Rutgers University

September 11, 2025

1/16



Table of contents

Announcements
Canvas timed quiz 1 and programming assignment 1

pointers.c: A lab exercise for pointers, arrays, and memory
Lesson 1: What are pointers?
Lesson 2: Dereferencing pointers with *
Lesson 3: The integer datatype uses four bytes
Lesson 4: Printing each byte of an integer
Lesson 5: Pointers are just variables that live in memory
Lesson 6: Arrays are just places in memory
Lesson 7: Passing-by-value
Lesson 8: Passing-by-reference
Lesson 9: Passing an array leads to passing-by-reference
Lesson 10: How the stack works; recursion example

2/16



Canvas timed quiz 1 and programming assignment 1

Quiz 1

1. Spanning Tuesday 9/9 - Wednesday 9/17.
60 minutes.
Two tries.

Linux, some C.

S N

Reviews recent concepts that would be fair game for exams.

Programming assignment 1

1. Due Friday 9/26.

2. Arrays, pointers, recursion, and algorithms.

3/16



Table of contents

Announcements
Canvas timed quiz 1 and programming assignment 1

pointers.c: A lab exercise for pointers, arrays, and memory
Lesson 1: What are pointers?
Lesson 2: Dereferencing pointers with *
Lesson 3: The integer datatype uses four bytes
Lesson 4: Printing each byte of an integer
Lesson 5: Pointers are just variables that live in memory
Lesson 6: Arrays are just places in memory
Lesson 7: Passing-by-value
Lesson 8: Passing-by-reference
Lesson 9: Passing an array leads to passing-by-reference
Lesson 10: How the stack works; recursion example

4/16



Why pointers?

Pointers underlie almost every programming language feature:

> arrays
» pass-by-reference
» data structures

Vital reason why C is a low-level, high-performance, systems-oriented
programming language (why we use it for this class, computer architecture).

5/16



Lesson 1: What are pointers?

» Pointers are numbers

» The unary operator & gives the “address of a variable”.
» how big is a pointer? 32-bit or 64-bit machine?

» Pointers are typed

6/16



Lesson 2: Dereferencing pointers with *

x»pointer: dereferencing operator: variable in that address

7116



int* ptrand int xptr

No difference between int + ptr and int *ptr
» intx ptr emphasizes that ptris int« type

» int xptr emphasizes that when you dereference ptr, you get a variable of
type int

8/16



Lesson 3: The integer datatype uses four bytes

» Memory is an array of addressable bytes

» Variables are simply names for contiguous sequences of bytes

9/16



Lesson 4: Printing each byte of an integer

» Most significant byte (MSB) first — big endian
» Least significant byte (LSB) first — little endian
Which one is true for the ilab machine?

10/16



Lesson 5: Pointers are just variables that live in memory

» Pointers to pointer

11/16



Lesson 6: Arrays are just places in memory

vVvYvyVvyVvyy

name of array points to first element
malloc () and free ()

stack and heap

using pointers instead of arrays
pointer arithmetic

charx argv[] and charxx argv are the same thing

12/16



Lesson 7: Passing-by-value

Using stack and heap picture, understand how pass by value and pass by
reference are different.

» C functions are entirely pass-by-value

» swap_pass_by_values () doesn’t actually succeed in swapping two
variables.

13/16



Lesson 8: Passing-by-reference

Using stack and heap picture, understand how pass by value and pass by
reference are different.

» You can create the illusion of pass-by-reference by passing pointers

» swap_pass_by_references () does succeed in swapping two variables.

14/16



Lesson 9: Passing an array leads to passing-by-reference

15/16



Lesson 10: How the stack works; recursion example

Low addresses ‘ ‘ Global / static data ‘

‘ Heap grows downward ‘ Dynamic memory allocation ‘

High addresses ‘ Stack grows upward ‘ Local variables, parameters ‘

Table: Memory structure

16/16



	Announcements
	Canvas timed quiz 1 and programming assignment 1

	pointers.c: A lab exercise for pointers, arrays, and memory
	Lesson 1: What are pointers?
	Lesson 2: Dereferencing pointers with *
	Lesson 3: The integer datatype uses four bytes
	Lesson 4: Printing each byte of an integer
	Lesson 5: Pointers are just variables that live in memory
	Lesson 6: Arrays are just places in memory
	Lesson 7: Passing-by-value
	Lesson 8: Passing-by-reference
	Lesson 9: Passing an array leads to passing-by-reference
	Lesson 10: How the stack works; recursion example


