
1/14

C Programming: Arrays, Functions

Yipeng Huang

Rutgers University

September 18, 2025

2/14

Table of contents

Announcements
Canvas timed quiz 2 and programming assignment 1

pointers.c: A lab exercise for pointers, arrays, and memory
Lesson 6: Arrays are just places in memory
Lesson 6: 2D arrays
Lesson 7: Passing-by-value
Lesson 8: Passing-by-reference
Lesson 9: Passing an array leads to passing-by-reference
Lesson 10: How the stack works; recursion example

matMul.c: Function for matrix-matrix multiplication

3/14

Canvas timed quiz 2 and programming assignment 1

Programming assignment 1

1. Due Friday 9/26.
2. Arrays, pointers, recursion, and beginning data structures.

4/14

Table of contents

Announcements
Canvas timed quiz 2 and programming assignment 1

pointers.c: A lab exercise for pointers, arrays, and memory
Lesson 6: Arrays are just places in memory
Lesson 6: 2D arrays
Lesson 7: Passing-by-value
Lesson 8: Passing-by-reference
Lesson 9: Passing an array leads to passing-by-reference
Lesson 10: How the stack works; recursion example

matMul.c: Function for matrix-matrix multiplication

5/14

Lesson 6: Arrays are just places in memory

▶ Three types of array in C: Fixed length, variable length, heap-allocated.
▶ name of array points to first element
▶ stack and heap
▶ malloc() and free()

▶ using pointers instead of arrays
▶ pointer arithmetic
▶ char* argv[] and char** argv are the same thing

6/14

Lesson 6: 2D arrays

7/14

Lesson 7: Passing-by-value

Using stack and heap picture, understand how pass by value and pass by
reference are different.
▶ C functions are entirely pass-by-value
▶ swap_pass_by_values() doesn’t actually succeed in swapping two

variables.

8/14

Lesson 8: Passing-by-reference

Using stack and heap picture, understand how pass by value and pass by
reference are different.
▶ You can create the illusion of pass-by-reference by passing pointers
▶ swap_pass_by_references() does succeed in swapping two variables.

9/14

Lesson 9: Passing an array leads to passing-by-reference

10/14

Lesson 10: How the stack works; recursion example

Low addresses Global / static data

Heap grows downward Dynamic memory allocation

High addresses Stack grows upward Local variables, parameters

Table: Memory structure

11/14

Table of contents

Announcements
Canvas timed quiz 2 and programming assignment 1

pointers.c: A lab exercise for pointers, arrays, and memory
Lesson 6: Arrays are just places in memory
Lesson 6: 2D arrays
Lesson 7: Passing-by-value
Lesson 8: Passing-by-reference
Lesson 9: Passing an array leads to passing-by-reference
Lesson 10: How the stack works; recursion example

matMul.c: Function for matrix-matrix multiplication

12/14

matMul.c: Function for matrix-matrix multiplication

What to pay attention to

▶ How matMulProduct result is given back to caller of function.
▶ How and where memory is allocated and freed.

13/14

Why matMul() is written that way

The matMul function signature in the
provided example code. Caller of
matMul allocates memory.

1 void matMul (
2 unsigned int l,
3 unsigned int m,
4 unsigned int n,
5 int** matrix_a,
6 int** matrix_b,
7 int** matMulProduct
8);

Suppose we want matMul() to be in
charge of allocating memory. How to
implement?

1 void matMul (
2 unsigned int l,
3 unsigned int m,
4 unsigned int n,
5 int** matrix_a,
6 int** matrix_b,
7 int*** matMulProduct
8);

14/14

Why matMul() is written that way

The matMul function signature in the
provided example code.

1 void matMul (
2 unsigned int l,
3 unsigned int m,
4 unsigned int n,
5 int** matrix_a,
6 int** matrix_b,
7 int** matMulProduct
8);

A more "natural" function signature with
return. How to implement?

1 int** matMul (
2 unsigned int l,
3 unsigned int m,
4 unsigned int n,
5 int** matrix_a,
6 int** matrix_b
7);

	Announcements
	Canvas timed quiz 2 and programming assignment 1

	pointers.c: A lab exercise for pointers, arrays, and memory
	Lesson 6: Arrays are just places in memory
	Lesson 6: 2D arrays
	Lesson 7: Passing-by-value
	Lesson 8: Passing-by-reference
	Lesson 9: Passing an array leads to passing-by-reference
	Lesson 10: How the stack works; recursion example

	matMul.c: Function for matrix-matrix multiplication

