C Programming: Arrays, Functions

Yipeng Huang
Rutgers University

September 18, 2025

114

Table of contents

Announcements
Canvas timed quiz 2 and programming assignment 1

pointers.c: A lab exercise for pointers, arrays, and memory
Lesson 6: Arrays are just places in memory
Lesson 6: 2D arrays
Lesson 7: Passing-by-value
Lesson 8: Passing-by-reference
Lesson 9: Passing an array leads to passing-by-reference
Lesson 10: How the stack works; recursion example

matMul . c: Function for matrix-matrix multiplication

2/14

Canvas timed quiz 2 and programming assignment 1

Programming assignment 1

1. Due Friday 9/26.

2. Arrays, pointers, recursion, and beginning data structures.

3/14

Table of contents

Announcements
Canvas timed quiz 2 and programming assignment 1

pointers.c: A lab exercise for pointers, arrays, and memory
Lesson 6: Arrays are just places in memory
Lesson 6: 2D arrays
Lesson 7: Passing-by-value
Lesson 8: Passing-by-reference
Lesson 9: Passing an array leads to passing-by-reference
Lesson 10: How the stack works; recursion example

matMul . c: Function for matrix-matrix multiplication

4/14

Lesson 6: Arrays are just places in memory

Three types of array in C: Fixed length, variable length, heap-allocated.
name of array points to first element

stack and heap

malloc () and free ()

using pointers instead of arrays

pointer arithmetic

vVvvyVvYVvyyypy

charx argv[] and charxx argv are the same thing

5/14

Lesson 6: 2D arrays

6/14

Lesson 7: Passing-by-value

Using stack and heap picture, understand how pass by value and pass by
reference are different.

» C functions are entirely pass-by-value

» swap_pass_by_values () doesn’t actually succeed in swapping two
variables.

7/14

Lesson 8: Passing-by-reference

Using stack and heap picture, understand how pass by value and pass by
reference are different.

» You can create the illusion of pass-by-reference by passing pointers

» swap_pass_by_references () does succeed in swapping two variables.

8/14

Lesson 9: Passing an array leads to passing-by-reference

9/14

Lesson 10: How the stack works; recursion example

Low addresses ‘ ‘ Global / static data ‘

‘ Heap grows downward ‘ Dynamic memory allocation ‘

High addresses ‘ Stack grows upward ‘ Local variables, parameters ‘

Table: Memory structure

10/14

Table of contents

Announcements
Canvas timed quiz 2 and programming assignment 1

pointers.c: A lab exercise for pointers, arrays, and memory
Lesson 6: Arrays are just places in memory
Lesson 6: 2D arrays
Lesson 7: Passing-by-value
Lesson 8: Passing-by-reference
Lesson 9: Passing an array leads to passing-by-reference
Lesson 10: How the stack works; recursion example

matMul . c: Function for matrix-matrix multiplication

11/14

matMul.c: Function for matrix-matrix multiplication

What to pay attention to

» How matMulProduct result is given back to caller of function.

» How and where memory is allocated and freed.

12/14

Why matMul() is written that way

The matMul function signature in the
provided example code. Caller of
matMul allocates memory.

Suppose we want matMul() to be in
charge of allocating memory. How to
implement?

void matMul (

unsigned int
unsigned int
unsigned int

1,
m,
n,

int** matrix_a,
int** matrix_b,

intx*+x matMulProduct

void matMul (
unsigned int 1,
unsigned int m,
unsigned int n,
int*x matrix_a,
int*x matrix_b,
int*** matMulProduct

13/14

Why matMul() is written that way

The matMul function signature in the
provided example code.

1 void matMul (

2 unsigned int 1,

3 unsigned int m,

4 unsigned int n,

5 int** matrix_a,

6 int** matrix_b,

7 intxx matMulProduct
8

)i

1
2
3
4
5
6
7

A more "natural" function signature with
return. How to implement?

int** matMul (

)i

unsigned int 1,
unsigned int m,
unsigned int n,
int*x matrix_a,
int** matrix_b

14/14

	Announcements
	Canvas timed quiz 2 and programming assignment 1

	pointers.c: A lab exercise for pointers, arrays, and memory
	Lesson 6: Arrays are just places in memory
	Lesson 6: 2D arrays
	Lesson 7: Passing-by-value
	Lesson 8: Passing-by-reference
	Lesson 9: Passing an array leads to passing-by-reference
	Lesson 10: How the stack works; recursion example

	matMul.c: Function for matrix-matrix multiplication

