
1/22

C Programming: Structs, functions, memory debugging

Yipeng Huang

Rutgers University

September 25, 2025

2/22

Table of contents
Announcements

Important change to recitation schedule
Canvas timed quiz 3 and programming assignment 1

Stack data structure: struct, push(), pop()

Understanding pass-by-value and pass-by-reference

Bugs and debugging related pointers, malloc, free
Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

3/22

Important change to recitation schedule

Rationale
1. Section 6 and 8 recitations were scheduled at the same time in different rooms.
2. Students should feel free to attend any and all recitations and office hours for

help with assignments.
3. Good to spread out opportunities for homework help across more days of the

week.

The plan

1. Jedrik’s recitation on Tuesdays 7:45 PM - 8:40 PM in Chemical Biology
CCB-1303 (capacity 117) remains in place.

2. Zirui’s recitation moves to Wednesday 5:55 PM - 6:50 PM in CoRE 301.
3. There is no more recitation in SEC-118. For help on Tuesday evenings, go to

CCB-1303.

4/22

Canvas timed quiz 3 and programming assignment 1

Programming assignment 1

1. Due Friday 9/26.
2. Arrays, pointers, recursion, beginning data structures.

Quiz 3
1. Spanning Today Wednesday 9/25 - Wednesday 10/1.
2. 60 minutes.
3. Two tries.
4. Arrays, pointers, structs, and memory

5/22

Table of contents
Announcements

Important change to recitation schedule
Canvas timed quiz 3 and programming assignment 1

Stack data structure: struct, push(), pop()

Understanding pass-by-value and pass-by-reference

Bugs and debugging related pointers, malloc, free
Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

6/22

struct

arrays vs structs
↭ Arrays group data of the same type. The [] operator accesses array elements.
↭ Structs group data of different type. The . operator accesses struct elements.

These are equivalent; the latter is shorthand:
BSTNode* root;

↭ (*root).key = key;

↭ root->key = key;

When structs are passed to functions, they are passed BY VALUE.

7/22

Table of contents
Announcements

Important change to recitation schedule
Canvas timed quiz 3 and programming assignment 1

Stack data structure: struct, push(), pop()

Understanding pass-by-value and pass-by-reference

Bugs and debugging related pointers, malloc, free
Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

8/22

Understanding pass-by-value and pass-by-reference

In this section, we study the push() function for a stack.
The push() function needs to make changes to the top of the stack, and return
pointers to stack elements such that the elements can later be freed from memory.

We consider four function signatures for push() that are incorrect.

1. void push (char value, struct stack s);

2. void push (char value, struct stack* s);

3. struct stack push (char value, struct stack s);

4. struct stack push (char value, struct stack* s);

And we consider two function signatures for push() that are correct.

5. void push (char value, struct stack** s);

6. struct stack* push (char value, struct stack* s);

E

9/22

Understanding pass-by-value and pass-by-reference

1 void push (char value, struct stack
s) { // bug in signature

2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = &s;
6

7 s = *bracket;
8

9 return;
10 }

1 int main () {
2 struct stack s;
3 push('S', s);
4 printf ("s.data = %c\n", s.data)

;
5 }

Version 1. An incorrect function signature for push().
This version of push() completely passes-by-value and has no effect on struct
stack s in main(), so s.data is uninitialized.

so

Od
or

Jarrah s

Em brake.tt TFif

iETTSma

start stack steep

10/22

Understanding pass-by-value and pass-by-reference

1 void push (char value, struct stack

* s) { // bug in signature
2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = s;
6

7 s = bracket;
8

9 return;
10 }

1 int main () {
2 struct stack s;
3 push('S', &s);
4 push('C', &s);
5 // printf ("s = %p\n", s);
6 struct stack* pointer = &s;
7 printf ("pop: %c\n", pop(&

pointer));
8 printf ("pop: %c\n", pop(&

pointer));
9 }

Version 2. An incorrect function signature for push().
This version of push() also has no effect on struct stack s in main().

M
y

steppeda
date

first

11/22

Understanding pass-by-value and pass-by-reference
1 struct stack push (char value,

struct stack s) { // bug in
signature

2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = &s;
6

7 s = *bracket;
8

9 return s;
10 }

Version 3. An incorrect function signature for push().
Here, we try returning an updated stack data structure via the return type of
push(). Lines 3, 7, and 9 will lead to a memory leak (pointer is lost). Line 5
assigns the next pointer to an address &s which will be out of scope in main().

7

Mt1f MÑTg É
É ÉÉ E
severally

12/22

Understanding pass-by-value and pass-by-reference

1 struct stack push (char value,
struct stack* s) { // bug in
signature

2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = s;
6

7 s = bracket;
8

9 return *s;
10 }

1 int main () {
2 struct stack s;
3 s = push('S', &s);
4 printf ("s.data = %c\n", s.data)

;
5 s = push('C', &s);
6 printf ("s.data = %c\n", s.data)

;
7 }

Version 4. An incorrect function signature for push().
Here, we again try returning an updated stack data structure via the return type of
push(). Lines 3, 7, and 9 will still lead to a memory leak (pointer is lost).

13/22

Understanding pass-by-value and pass-by-reference

1 void push (char value, struct stack

** s) {
2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = *s;
6

7 *s = bracket;
8

9 return;
10 }

1 int main () {
2 struct stack* s;
3 push('S', &s);
4 push('C', &s);
5 printf ("pop: %c\n", pop(&s));
6 printf ("pop: %c\n", pop(&s));
7 }

Version 5. A correct function signature for push().
struct stack* s in main() updates by passing the struct stack *
parameter via pass-by-reference, leading to the push() signature that you see
here. This matches the signature that you see for the pop() function.

14/22

Understanding pass-by-value and pass-by-reference
1 struct stack* push (char value,

struct stack* s) {
2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = s;
6

7 s = bracket;
8

9 return s;
10 }

1 int main () {
2 struct stack* s;
3 s = push('S', s);
4 s = push('C', s);
5 printf ("pop: %c\n", pop(&s));
6 printf ("pop: %c\n", pop(&s));
7 }

Version 6. A correct function signature for push().
struct stack* s updates via the return type of push() in main(), lines 3 and
4. Side note, this is similar to the function signature BSTNode* insert
(BSTNode* root, int key) shown in class on 2/4. Side note, pop() needs to
return the character data, so pop() cannot have a similar function signature.

15/22

Table of contents
Announcements

Important change to recitation schedule
Canvas timed quiz 3 and programming assignment 1

Stack data structure: struct, push(), pop()

Understanding pass-by-value and pass-by-reference

Bugs and debugging related pointers, malloc, free
Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

16/22

Failure to free

1 #include <stdlib.h>
2 #include <stdio.h>
3

4 int main () {
5

6 int* pointer0 = malloc(sizeof(int));
7 *pointer0 = 100;
8 printf("*pointer0 = %d\n", *pointer0);
9

10 }

Note: calloc() functions like malloc(), but calloc() initializes memory to zero while
malloc() offers no such guarantee.

Memory leaks
Have you ever had to restart software or hardware to recover it?
Debug by compilation in GCC, running with Valgrind, Address Sanitizer

17/22

Use after free

1 int* pointer0 = malloc(sizeof(int));
2

3 printf("pointer0 = %p\n", pointer0);
4 *pointer0 = 100;
5 printf("*pointer0 = %d\n", *pointer0);
6

7 free(pointer0);
8 pointer0 = NULL;
9

10 printf("pointer0 = %p\n", pointer0);
11 *pointer0 = 10;
12 printf("*pointer0 = %d\n", *pointer0);

Dangling pointers
↭ One defensive programming style is to set any freed pointer to NULL.
↭ Debug by running with Valgrind, Address Sanitizer.

18/22

Pointer aliasing
1 int* pointer0 = malloc(sizeof(int));
2 int* pointer1 = pointer0;
3

4 *pointer0 = 100;
5 printf("*pointer1 = %d\n", *pointer1);
6

7 *pointer0 = 10;
8 printf("*pointer1 = %d\n", *pointer1);
9

10 free(pointer0);
11 pointer0 = NULL;
12

13 *pointer1 = 1;
14 printf("*pointer1 = %d\n", *pointer1);

Debug by running with Valgrind, Address Sanitizer
Pointer aliasing and overhead of garbage collection
↭ Java garbage collection tracks dangling pointers but costs performance.
↭ C requires programmer to manage pointers but is more difficult.

19/22

Pointer typing

1 unsigned char n = 2;
2 unsigned char m = 3;
3

4 unsigned char ** p;
5 p = calloc(n, sizeof(unsigned char));
6

7 for (int i = 0; i < n; i++)
8 p[i] = calloc(m, sizeof(unsigned char));
9

10 for (int i = 0; i < n; i++)
11 for (int j = 0; j < m; j++) {
12 p[i][j] = 10*i+j;
13 printf("p[%d][%d] = %d\n", i, j, p[i][j]);
14 }

Defend using explicit pointer casting.

20/22

Table of contents
Announcements

Important change to recitation schedule
Canvas timed quiz 3 and programming assignment 1

Stack data structure: struct, push(), pop()

Understanding pass-by-value and pass-by-reference

Bugs and debugging related pointers, malloc, free
Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

21/22

Non existent memory

1 #include <stdlib.h>
2 #include <stdio.h>
3

4 int main () {
5

6 int **x = malloc(sizeof(int*));
7 **x = 8;
8 printf("x = %p\n", x);
9 printf("*x = %p\n", *x);

10 printf("**x = %d\n", **x);
11 fflush(stdout);
12

13 }

Debug by running with Valgrind, Address Sanitizer

22/22

Returning null pointer

1

2 int* returnsNull () {
3 int val = 100;
4 return &val;
5 }
6

7 int main () {
8

9 int* pointer = returnsNull();
10 printf("pointer = %p\n", pointer);
11 printf("*pointer = %d\n", *pointer);
12

13 }

Prevent using -Werror compilation flag.

