Data representation: Bits, Bytes, Integers

Yipeng Huang
Rutgers University

September 29, 2025

1/42

Welo Jerrmd

Table of contents
Announcements

Important change to recitation schedule
Canvas timed quiz 3 and programming assignment 1
Understanding pass-by-value and pass-by-reference
Bugs and debugging related pointers, malloc, free
Failure to free
Use after free
Pointer aliasing
Pointer typing
Bugs and debugging related C memory model
Non existent memory
Returning null pointer
Future computer architectures
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal

Representing characters /
. . o 2/42

Important change to recitation schedule

Rationale

1. Section 6 and 8 recitations were scheduled at the same time in different rooms.

2. Students should feel free to attend any and all recitations and office hours for
help with assignments.

3. Good to spread out opportunities for homework help across more days of the
week.

The plan
1. Jedrik’s recitation on Tuesdays 7:45 PM - 8:40 PM in Chemical Biology
CCB-1303 (capacity 117) remains in place.
2. Zirui’s recitation moves to Wednesday 5:55 PM - 6:50 PM in CoRE 301.

3. There is no more recitation in SEC-118. For help on Tuesday evenings, go to
CCB-1303.

3/42

Canvas timed quiz 3 and programming assignment 1

Programming assignment 2

1. Due Friday 10/10.

2. Hash tables, graph algorithms, and recursion.

Quiz 3
1. Spanning Wednesday 9/25 - Wednesday 10/1.
2. 60 minutes.
3. Two tries.

4. Arrays, pointers, structs, and memory

4/42

Table of contents
Announcements

Important change to recitation schedule
Canvas timed quiz 3 and programming assignment 1
Understanding pass-by-value and pass-by-reference
Bugs and debugging related pointers, malloc, free
Failure to free
Use after free
Pointer aliasing
Pointer typing
Bugs and debugging related C memory model
Non existent memory
Returning null pointer
o Future computer architectures ~——
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal

Representing characters /
[. e 5/42

Understanding pass-by-value and pass-by-reference

In this section, we study the push () function for a stack.

The push () function needs to make changes to the top of the stack, and return
pointers to stack elements such that the elements can later be freed from memory.

We consider four function signatures for push () that are incorrect.

1. void push (char value, struct stack s);
2. void push (char value, struct stackx s);
3. struct stack push (char value, struct stack s);

4. struct stack push (char value, struct stack* s);

And we consider two function signatures for push () that are correct.

5. void push (char value, struct stack*x s);

6. struct stackx push (char value, struct stack* s);

Understanding pass-by-value and pass-by-reference

1 void push (char value, struct stack
s) { // bug in signature

2
3 struct stack *bracket = malloc(1 int main () {

sizeof (struct stack)); 2 struct stack s;
4 bracket—->data = value; 3 push('S', s);
5 bracket->next = &s; 4 printf ("s.data = %c\n", s.data)
6 ;
7 s = *bracket; 5 }
8
9 return;

10

Version 1. An incorrect function signature for push () .

This version of push () completely passes-by-value and has no effect on st ruct
stack sinmain (), so s.data is uninitialized.

7/42

Understanding pass-by-value and pass-by-reference

1 void push (char wvalue, struct stack
x s) { // bug in signature

2

3 struct stack *bracket = malloc(

sizeof (struct stack));
bracket->data = wvalue;
bracket->next = s;

s = bracket;

return;

1
2
3
4
5
6
7

9

int main () {

struct stack s;
push('S', &s);
push('C', &s);

// printf ("s p\n", s);

struct stackx pointer = &s;
printf ("pop: %c\n", pop (&
pointer));

printf ("pop: %c\n", pop (&
pointer));

Version 2. An incorrect function signature for push ().

This version of push () also has no effect on struct stack sinmain().

8/42

Understanding pass-by-value and pass-by-reference

1 struct stack push (char wvalue,
struct stack s) { // bug in
signature
struct stack *bracket = malloc(

sizeof (struct stack));
bracket—->data = value;
bracket->next = &s;

s = *pbracket;

return s;

Version 3. An incorrect function signature for push ().

Here, we try returning an updated stack data structure via the return type of
push (). Lines 3, 7, and 9 will lead to a memory leak (pointer is lost). Line 5

assigns the next pointer to an address &s which will be out of scope in main ().

9/42

Understanding pass-by-value and pass-by-reference

1 struct stack push (char wvalue,

struct stack* s) { // bug in

signature 1 int main () {
2 2 struct stack s;
3 struct stack xbracket = malloc(3 s = push('S', &s);

sizeof (struct stack)); 4 printf ("s.data = %c\n", s.data)

4 bracket—->data = wvalue; ;
5 bracket->next = s; 5 s = push('C', &s);
6 6 printf ("s.data = %c\n", s.data)
7 s = bracket; ;
8 7 }
9 return *s;

Version 4. An incorrect function signature for push () .

Here, we again try returning an updated stack data structure via the return type of
push (). Lines 3, 7, and 9 will still lead to a memory leak (pointer is lost).

10/42

Understanding pass-by-value and pass-by-reference

1 void push (char value, struct stack
kx5) |
2 1 int main () {
3 struct stack *bracket = malloc(
, 2 struct stackx* s;
sizeof (struct stack)); ush('s' 6s) ;
4 bracket->data = value; = P ! ’
bracket—->next = *s; : push('C', &s);
Qi’—;r ! 5 printf ("pop: %c\n", pop(&s));
6 rintf ("pop: %c\n" op (&s ;
7 o *s = bracket; ;) P ("pop \n", pop (&s)) ;

8
9 — 7 return;
10 }

Version 5. A correct function signature for push () .

struct stack* sinmain () updates by passing the struct stack =
parameter via pass-by-reference, leading to the push () signature that you see
here. This matches the signature that you see for the pop () function.

11/42

@KSYa

Shoct stde ¥ 8= OF 0

Meviin (|

k

VS oo

Understanding pass-by-value and pass-by-reference

(itruct stackg push (char valuej

——scruct stackx s) |

Y

1 int main () {
struct stack *bracket = malloc(
5’ , 2 struct stackx s; -
sizeof (struct stack)); v
3 — s = push('S'", s);

4 bracket->data = value;

— h 'C', ;
g§f> bracket->next = s; 4= S push (s)

5 printf ("pop: %c\n", pop(&s));
6 printf ("pop: %c\n", pop(&s));
7 }

*p s = bgcket;

7
8
= return s;

Version 6. A correct function signature for push () .

struct stack* s updates via the return type of push () inmain (), lines 3 and
4. Side note, pop () needs to return the character data, so pop () cannot have a
similar function signature.

FOSAS SRS

(

o | |
S Sad X S = Qv Ng

U

Table of contents
Announcements

Important change to recitation schedule
Canvas timed quiz 3 and programming assignment 1
Understanding pass-by-value and pass-by-reference
Bugs and debugging related pointers, malloc, free
Failure to free
Use after free
Pointer aliasing
Pointer typing
Bugs and debugging related C memory model
Non existent memory
Returning null pointer
Future computer architectures
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal

Representing characters /
[. e 13/42

Failure to free

#include <stdlib.h>
#include <stdio.h>

int main () {
intx pointer0 = malloc(sizeof (int));
*pointer0 = 100;

printf ("+pointer0 = %$d\n", xpointer0);

10 }

Note: calloc() functions like malloc(), but calloc() initializes memory to zero while
malloc() offers no such guarantee.

Memory leaks
Have you ever had to restart software or hardware to recover it?
Debug by compilation in GCC, running with Valgrind, Address Sanitizer

14/42

Use after free

O 0 NI O U B~ W N

—_
(e)

11
12

intx pointer0 = malloc(sizeof (int));

printf ("pointer0 = %$p\n", pointer0);
*pointer0 = 100;

printf ("+xpointer0 = %$d\n", xpointer0);

free (pointer0);
pointer0 = NULL;

printf ("pointer0 = %p\n", pointer0);
*pointer0 = 10;

printf ("+xpointer0 = $d\n", xpointer0);

Dangling pointers

» One defensive programming style is to set any freed pointer to NULL.

» Debug by running with Valgrind, Address Sanitizer.

15/42

Pointer aliasing

int* pointer0 = malloc(sizeof (int));
intx pointerl = pointer0;

*pointer0 = 100;
printf ("xpointerl = %d\n", xpointerl);

*pointer0 = 10;
printf ("xpointerl = %$d\n", <pointerl);

O 0 NI O G B W DN

—_
(@)

free(pointer0);
pointer0 = NULL;

S Y
W N =

*pointerl = 1;
printf ("xpointerl = %d\n", <pointerl);

—_
S

Debug by running with Valgrind, Address Sanitizer
Pointer aliasing and overhead of garbage collection

» Java garbage collection tracks dangling pointers but costs performance.

» (C reauires procrammet to manace ptointers but is more difficult 16/42

Pointer typing

1 unsigned char n = 2;

2 unsigned char m = 3;

3

4 unsigned char *xx* p;

5 p = calloc(n, sizeof (unsigned char));

6

7 for (int 1 = 0; i1 < n; i++)

8 pli] = calloc(m, sizeof (unsigned char));
9

10 for (int 1 = 0; 1 < n; 1i++)

11 for (int 3 = 0; 7 < m; J++) {

12 pli] [J] = 10%i+3;

13 printf ("p[%d] [%d] = %d\n", 1, J, plil[]]);

14 }

Defend using explicit pointer casting.

17/42

Table of contents
Announcements

Important change to recitation schedule
Canvas timed quiz 3 and programming assignment 1
Understanding pass-by-value and pass-by-reference
Bugs and debugging related pointers, malloc, free
Failure to free
Use after free
Pointer aliasing
Pointer typing
Bugs and debugging related C memory model
Non existent memory
Returning null pointer
Future computer architectures
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal

Representing characters /
[. e 18/42

Non existent memory

1 #include <stdlib.h>
2 #include <stdio.h>

3
4 int main () |
5
6 int *»*xx = malloc(sizeof (intx*));
7 **X = 8;
8 printf ("x = %p\n", x);
9 printf ("+xx = %Sp\n", *x);
10 printf ("x*x = $d\n", *%*x);
(

11 fflush (stdout) ;
12
13}

Debug by running with Valgrind, Address Sanitizer

19/42

Returning null pointer

int* returnsNull () {
int val = 100;
return &val;

int main () {
int* pointer = returnsNull ();
10 printf ("pointer = %$p\n", pointer);
11 printf ("xpointer = %d\n", xpointer);

13}

Prevent using -Werror compilation flag.

20/42

Table of contents
Announcements

Important change to recitation schedule
Canvas timed quiz 3 and programming assignment 1
Understanding pass-by-value and pass-by-reference
Bugs and debugging related pointers, malloc, free
Failure to free
Use after free
Pointer aliasing
Pointer typing
Bugs and debugging related C memory model
Non existent memory
Returning null pointer
Future computer architectures
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal

Representing characters /
. . . 21/42

Future computer architectures: A quantum pointer?

For n = 1, four possibilities

fo fi f2 f3
£(0) | O 0 1 1
f(1) | O 1 0 1
f is constant 0 | f is balanced | f is balanced | f is constant 1

22/42

A simple physics experiment that classical computing cannot
replicate

Algorithm

David Deutsch and Richard Jozsa. Rapid solution of problems by quantum
computation. 1992.

Implementation

» Mach-Zehnder interferometer implementation.
https://www.st—-andrews.ac.uk/physics/quvis/simulations_
html5/sims/SinglePhotonLab/SinglePhotonLab.html

23/42

https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/SinglePhotonLab.html
https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/SinglePhotonLab.html

Mathematical description of the algorithm

(1
I /A H
=4 = VE] = 10)
vz
. T
N ﬁ>—[@] &)
0) 2 |[+) = “P]< val
—7 NG H
v2 —+>—M LT
E 1
gzt @] 5o
k i

24/42

The binary abstraction: classical and quantum

High, low voltage

Adds resilience against noise.

Representation as a state vector
> |1 = |0) We pronounce this "ket" 0

> = |1) We pronounce this "ket" 1

O
%
1

25/42

The Hadamard gate

Matrix representation of Hadamard operator: H = [

S-Sl
SILS-

1 1 S 1
- _— 1 -

> H|0)= |2 V2 = 2| = L0+ L 1)
o) 0 | 2 v
L 1) g1 [L

> H|l)= | V2 = (V21 =210y - L)
oMo |m

26/42

Superposition
Single qubit state

>a!0>+ﬁ]1>:[g]

» Amplitudes o, 3 € C
> lal*+ (B> =1

» The above constraints require that qubit operators are unitary matrices.

Many physical phenomena can be in superposition and encode qubits

» DPolarization of light in different directions

» Electron spins (Intel solid state qubits)

> Atom energy states (UMD, IonQ) ion trap qubits)

» Quantized voltage and current (IBM, Google superconducting qubits)

If multiple discrete values are possible (e.g., atom energy states, voltage and

current), we pick (bottom) two for the binary abstraction.
27/42

Mathematical description of the algorithm

(1
I /A H
=4 = VE] = 10)
vz
. T
N ﬁ>—[@] &)
0) 2 |[+) = “P]< val
—7 NG H
v2 —+>—M LT
E 1
gzt @] 5o
k i

28/42

Table of contents
Announcements

Important change to recitation schedule
Canvas timed quiz 3 and programming assignment 1
Understanding pass-by-value and pass-by-reference
Bugs and debugging related pointers, malloc, free
Failure to free
Use after free
Pointer aliasing
Pointer typing
Bugs and debugging related C memory model
Non existent memory
Returning null pointer
Future computer architectures
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal

Representing characters /
[. e 29/42

Why binary

Everything is bits

m EachbitisOor1l

m By encoding/interpreting sets of bits in various ways
= Computers determine what to do (instructions)
= .. and represent and manipulate numbers, sets, strings, etc...
m Why bits? Electronic Implementation
= Easy to store with bistable elements
= Reliably transmitted on noisy and inaccurate wires

— 0 > le 1 >| — Q0 —
1.1V —
0.9v —
0.0V —
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

30/42

Decimal, binary, octal, and hexadecimal

Decimal Binary Octal Hexadecimal Decimal Binary Octal Hexadecimal
0 0b0000 000 0x0 8 0b1000 0010 0x8
1 0b0001 Ool 0x1 9 0b1001 0Ooll 0x9
2 0b0010 0o2 0x2 10 0b1010 0Ool2 OxA
3 0b0011 0Oo3 0x3 11 0b1011 0013 0xB
4 0b0100 Oo4 Ox4 12 0b1100 0Ool4 0xC
5 0b0101 005 0x5 13 0b1101 0015 0xD
6 0b0110 0o6 0x6 14 O0b1110 Oolé6 OxE
7 0b0111 007 0x7 15 0b1111 0ol7 OxF

In C, format specifiers for printf() and fscanf():

1. decimal: "%d’

2. binary: none
3. octal: %0’

4. hexadecimal: "%x’

31/42

Decimal, binary, octal, and hexadecimal

How to represent the range of unsigned char in each?
Unsigned char is one byte, 8 bits.

1. decimal: 0 to 255

2. binary: 0b0 to Ob11111111

3. octal: 0 to 00377 (group by 3 bits)

4. hexadecimal: 0x00 to OxFF (group by 4 bits)

32/42

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255

7?72
#000000 #FFFFFF #6A757C #CC0033

33/42

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255

#000000 #FFFFEFF #6A757C #CC0033

34/42

Representing characters

USASCIl code chart

. . b °0 |© ° I ° i "o |'o " v
» char is a 1-byte, 8-bit AP ol i "of "i] %ol "] Tof
data t s Palbaofo N b s 3 4 s |6 |7
ata type. vl oo |t |Rowy
.) olololo| O |nNuL [oLe | sP | o© @ P \ P
> ASCIlis a 7-bit olo]o]1 | |son | oci | 1 A Q o q
encoding standard. olo[Jo] 2 [sx|ocz | “ [2 [8 [R [b [*
y olo|]| 3 |eTx | pCc3 # 3 o S c s
» "man ascii' to see ol1{olol 4 [eor [pca | o a D T d 1
L. 1 o1 O] 5 ENQ | NAK % 5 3 U e u
Imnux manual. ol [vlol 6 [ack |syN | & 6 F v f v
. o1l 7 BEL | ETB ’ 7 G w 9 w
> Complle and run 1{ojoflo] 8 | 85 [can | « 8 H X h x
ascii.c to see it Iin i {oJo[1] 9 [nT | Em) 9 1 Y i y
. 1jo}j1}j0] 10 | LF | sus »* : J 2 j z
action. r{of{ir v] 11 VT | ESC + : K C K (
> . . rjir]Jojo] 12 FF FS . < L \ l |
Some interesting o T Ter Tes 1= T T3
characters: 7 (bell), 10 i {ol 14 [so[Rrs | . | >N |~ n [~
i1l ryas | st | us / ? 0 — o | OEL |

(new line), 27 (escape).

Figure: ASCII character set. Image credit Wikimedia

35/42

Bitwise operations

Why are bitwise operations important?

» Network and UNIX settings using bit masks (e.g., umask)
» Hardware and microcontroller programming (e.g., Arduinos)

» Instruction set architecture encodings (e.g., ARM, x86)

36/42

Bitwise operations

~: bitwise NOT

unsigned char a = 128

a = 0b1000_0000

“a = ~0061000_0000
= 000111_1111
=127

37/42

Bitwise operations

&: bitwise AND

3&1 = 0b11&0601
= 0001
=1

_ - O O

_0 = O T

—_ O O Ol

38/42

Bitwise operations

| : bitwise OR

3|1 = 0b11|0601

a b alb
= 0b11 0 0 0
=3 0 1 1

1 0 1

1 1 1

2|1 = 0b10|0601
= 0b11
=3

39/42

Bitwise operations

" bitwise XOR

3A1=0011 A 0601
= 0010
=2

—_—_ O O

_ O = Ol T

O = = O

40/42

inplaceSwap.c: Swapping variables without temp variables.

How does it work?

41/42

Don’t confuse bitwise operators with logical operators

Bitwise operators
> -
> &
> |
>

Logical operators
> |

> &&
> ||

» = (for bool type)

42/42

