
1/42

Data representation: Bits, Bytes, Integers

Yipeng Huang

Rutgers University

September 29, 2025

Metalearning

2/42

Table of contents
Announcements

Important change to recitation schedule
Canvas timed quiz 3 and programming assignment 1

Understanding pass-by-value and pass-by-reference
Bugs and debugging related pointers, malloc, free

Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

Future computer architectures
Bits and bytes

Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

3/42

Important change to recitation schedule

Rationale
1. Section 6 and 8 recitations were scheduled at the same time in different rooms.
2. Students should feel free to attend any and all recitations and office hours for

help with assignments.
3. Good to spread out opportunities for homework help across more days of the

week.

The plan

1. Jedrik’s recitation on Tuesdays 7:45 PM - 8:40 PM in Chemical Biology
CCB-1303 (capacity 117) remains in place.

2. Zirui’s recitation moves to Wednesday 5:55 PM - 6:50 PM in CoRE 301.
3. There is no more recitation in SEC-118. For help on Tuesday evenings, go to

CCB-1303.

4/42

Canvas timed quiz 3 and programming assignment 1

Programming assignment 2

1. Due Friday 10/10.
2. Hash tables, graph algorithms, and recursion.

Quiz 3
1. Spanning Wednesday 9/25 - Wednesday 10/1.
2. 60 minutes.
3. Two tries.
4. Arrays, pointers, structs, and memory

5/42

Table of contents
Announcements

Important change to recitation schedule
Canvas timed quiz 3 and programming assignment 1

Understanding pass-by-value and pass-by-reference
Bugs and debugging related pointers, malloc, free

Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

Future computer architectures
Bits and bytes

Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

6/42

Understanding pass-by-value and pass-by-reference

In this section, we study the push() function for a stack.
The push() function needs to make changes to the top of the stack, and return
pointers to stack elements such that the elements can later be freed from memory.

We consider four function signatures for push() that are incorrect.

1. void push (char value, struct stack s);

2. void push (char value, struct stack* s);

3. struct stack push (char value, struct stack s);

4. struct stack push (char value, struct stack* s);

And we consider two function signatures for push() that are correct.

5. void push (char value, struct stack** s);

6. struct stack* push (char value, struct stack* s);

7/42

Understanding pass-by-value and pass-by-reference

1 void push (char value, struct stack
s) { // bug in signature

2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = &s;
6

7 s = *bracket;
8

9 return;
10 }

1 int main () {
2 struct stack s;
3 push('S', s);
4 printf ("s.data = %c\n", s.data)

;
5 }

Version 1. An incorrect function signature for push().
This version of push() completely passes-by-value and has no effect on struct
stack s in main(), so s.data is uninitialized.

8/42

Understanding pass-by-value and pass-by-reference

1 void push (char value, struct stack

* s) { // bug in signature
2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = s;
6

7 s = bracket;
8

9 return;
10 }

1 int main () {
2 struct stack s;
3 push('S', &s);
4 push('C', &s);
5 // printf ("s = %p\n", s);
6 struct stack* pointer = &s;
7 printf ("pop: %c\n", pop(&

pointer));
8 printf ("pop: %c\n", pop(&

pointer));
9 }

Version 2. An incorrect function signature for push().
This version of push() also has no effect on struct stack s in main().

9/42

Understanding pass-by-value and pass-by-reference
1 struct stack push (char value,

struct stack s) { // bug in
signature

2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = &s;
6

7 s = *bracket;
8

9 return s;
10 }

Version 3. An incorrect function signature for push().
Here, we try returning an updated stack data structure via the return type of
push(). Lines 3, 7, and 9 will lead to a memory leak (pointer is lost). Line 5
assigns the next pointer to an address &s which will be out of scope in main().

10/42

Understanding pass-by-value and pass-by-reference

1 struct stack push (char value,
struct stack* s) { // bug in
signature

2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = s;
6

7 s = bracket;
8

9 return *s;
10 }

1 int main () {
2 struct stack s;
3 s = push('S', &s);
4 printf ("s.data = %c\n", s.data)

;
5 s = push('C', &s);
6 printf ("s.data = %c\n", s.data)

;
7 }

Version 4. An incorrect function signature for push().
Here, we again try returning an updated stack data structure via the return type of
push(). Lines 3, 7, and 9 will still lead to a memory leak (pointer is lost).

11/42

Understanding pass-by-value and pass-by-reference

1 void push (char value, struct stack

** s) {
2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = *s;
6

7 *s = bracket;
8

9 return;
10 }

1 int main () {
2 struct stack* s;
3 push('S', &s);
4 push('C', &s);
5 printf ("pop: %c\n", pop(&s));
6 printf ("pop: %c\n", pop(&s));
7 }

Version 5. A correct function signature for push().
struct stack* s in main() updates by passing the struct stack *
parameter via pass-by-reference, leading to the push() signature that you see
here. This matches the signature that you see for the pop() function.

of

M M 0700
e
m in

FearW next
to

e
F'stacxÉ 50

12/42

Understanding pass-by-value and pass-by-reference

1 struct stack* push (char value,
struct stack* s) {

2

3 struct stack *bracket = malloc(
sizeof(struct stack));

4 bracket->data = value;
5 bracket->next = s;
6

7 s = bracket;
8

9 return s;
10 }

1 int main () {
2 struct stack* s;
3 s = push('S', s);
4 s = push('C', s);
5 printf ("pop: %c\n", pop(&s));
6 printf ("pop: %c\n", pop(&s));
7 }

Version 6. A correct function signature for push().
struct stack* s updates via the return type of push() in main(), lines 3 and
4. Side note, pop() needs to return the character data, so pop() cannot have a
similar function signature.

e

Is
v

MR t
ÉÉ

0 770

ftp.msn.my
P

no

13/42

Table of contents
Announcements

Important change to recitation schedule
Canvas timed quiz 3 and programming assignment 1

Understanding pass-by-value and pass-by-reference
Bugs and debugging related pointers, malloc, free

Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

Future computer architectures
Bits and bytes

Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

14/42

Failure to free

1 #include <stdlib.h>
2 #include <stdio.h>
3

4 int main () {
5

6 int* pointer0 = malloc(sizeof(int));
7 *pointer0 = 100;
8 printf("*pointer0 = %d\n", *pointer0);
9

10 }

Note: calloc() functions like malloc(), but calloc() initializes memory to zero while
malloc() offers no such guarantee.

Memory leaks
Have you ever had to restart software or hardware to recover it?
Debug by compilation in GCC, running with Valgrind, Address Sanitizer

15/42

Use after free

1 int* pointer0 = malloc(sizeof(int));
2

3 printf("pointer0 = %p\n", pointer0);
4 *pointer0 = 100;
5 printf("*pointer0 = %d\n", *pointer0);
6

7 free(pointer0);
8 pointer0 = NULL;
9

10 printf("pointer0 = %p\n", pointer0);
11 *pointer0 = 10;
12 printf("*pointer0 = %d\n", *pointer0);

Dangling pointers
↭ One defensive programming style is to set any freed pointer to NULL.
↭ Debug by running with Valgrind, Address Sanitizer.

16/42

Pointer aliasing
1 int* pointer0 = malloc(sizeof(int));
2 int* pointer1 = pointer0;
3

4 *pointer0 = 100;
5 printf("*pointer1 = %d\n", *pointer1);
6

7 *pointer0 = 10;
8 printf("*pointer1 = %d\n", *pointer1);
9

10 free(pointer0);
11 pointer0 = NULL;
12

13 *pointer1 = 1;
14 printf("*pointer1 = %d\n", *pointer1);

Debug by running with Valgrind, Address Sanitizer
Pointer aliasing and overhead of garbage collection
↭ Java garbage collection tracks dangling pointers but costs performance.
↭ C requires programmer to manage pointers but is more difficult.

17/42

Pointer typing

1 unsigned char n = 2;
2 unsigned char m = 3;
3

4 unsigned char ** p;
5 p = calloc(n, sizeof(unsigned char));
6

7 for (int i = 0; i < n; i++)
8 p[i] = calloc(m, sizeof(unsigned char));
9

10 for (int i = 0; i < n; i++)
11 for (int j = 0; j < m; j++) {
12 p[i][j] = 10*i+j;
13 printf("p[%d][%d] = %d\n", i, j, p[i][j]);
14 }

Defend using explicit pointer casting.

18/42

Table of contents
Announcements

Important change to recitation schedule
Canvas timed quiz 3 and programming assignment 1

Understanding pass-by-value and pass-by-reference
Bugs and debugging related pointers, malloc, free

Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

Future computer architectures
Bits and bytes

Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

19/42

Non existent memory

1 #include <stdlib.h>
2 #include <stdio.h>
3

4 int main () {
5

6 int **x = malloc(sizeof(int*));
7 **x = 8;
8 printf("x = %p\n", x);
9 printf("*x = %p\n", *x);

10 printf("**x = %d\n", **x);
11 fflush(stdout);
12

13 }

Debug by running with Valgrind, Address Sanitizer

20/42

Returning null pointer

1

2 int* returnsNull () {
3 int val = 100;
4 return &val;
5 }
6

7 int main () {
8

9 int* pointer = returnsNull();
10 printf("pointer = %p\n", pointer);
11 printf("*pointer = %d\n", *pointer);
12

13 }

Prevent using -Werror compilation flag.

21/42

Table of contents
Announcements

Important change to recitation schedule
Canvas timed quiz 3 and programming assignment 1

Understanding pass-by-value and pass-by-reference
Bugs and debugging related pointers, malloc, free

Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

Future computer architectures
Bits and bytes

Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

22/42

Future computer architectures: A quantum pointer?

For n = 1, four possibilities
f0 f1 f2 f3

f(0) 0 0 1 1
f(1) 0 1 0 1

f is constant 0 f is balanced f is balanced f is constant 1

23/42

A simple physics experiment that classical computing cannot
replicate

Algorithm
David Deutsch and Richard Jozsa. Rapid solution of problems by quantum
computation. 1992.

Implementation
↭ Mach-Zehnder interferometer implementation.

https://www.st-andrews.ac.uk/physics/quvis/simulations_
html5/sims/SinglePhotonLab/SinglePhotonLab.html

https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/SinglePhotonLab.html
https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/SinglePhotonLab.html

24/42

Mathematical description of the algorithm

|0→ H↑↓ |+→ =
[

1→
2

1→
2

]






I↑↓ |+→ =
[

1→
2

1→
2

]
H↑↓ |0→

Z↑↓ |↑→ =
[

1→
2

↑1→
2

]
H↑↓ |1→

↑Z↑↑↓ ↑ |↑→ =
[↑1→

2
1→
2

]
H↑↓ ↑ |1→

↑ZZ=↑I↑↑↑↑↑↓ ↑ |+→ =
[↑1→

2
↑1→

2

]
H↑↓ ↑ |0→

25/42

The binary abstraction: classical and quantum

High, low voltage
Adds resilience against noise.

Representation as a state vector

↭
[

1
0

]
= |0→ We pronounce this "ket" 0

↭
[

0
1

]
= |1→ We pronounce this "ket" 1

26/42

The Hadamard gate

Matrix representation of Hadamard operator: H =

[
1→
2

1→
2

1→
2

↑1→
2

]

↭ H |0→ =
[

1→
2

1→
2

1→
2

↑1→
2

] [
1
0

]
=

[
1→
2

1→
2

]
= 1→

2
|0→+ 1→

2
|1→

↭ H |1→ =
[

1→
2

1→
2

1→
2

↑1→
2

] [
0
1

]
=

[
1→
2

↑1→
2

]
= 1→

2
|0→ ↑ 1→

2
|1→

27/42

Superposition
Single qubit state

↭ ω |0→+ ε |1→ =
[
ω
ε

]

↭ Amplitudes ω,ε ↔ C
↭ |ω|2 + |ε|2 = 1
↭ The above constraints require that qubit operators are unitary matrices.

Many physical phenomena can be in superposition and encode qubits
↭ Polarization of light in different directions
↭ Electron spins (Intel solid state qubits)
↭ Atom energy states (UMD, IonQ ion trap qubits)
↭ Quantized voltage and current (IBM, Google superconducting qubits)

If multiple discrete values are possible (e.g., atom energy states, voltage and
current), we pick (bottom) two for the binary abstraction.

28/42

Mathematical description of the algorithm

|0→ H↑↓ |+→ =
[

1→
2

1→
2

]






I↑↓ |+→ =
[

1→
2

1→
2

]
H↑↓ |0→

Z↑↓ |↑→ =
[

1→
2

↑1→
2

]
H↑↓ |1→

↑Z↑↑↓ ↑ |↑→ =
[↑1→

2
1→
2

]
H↑↓ ↑ |1→

↑ZZ=↑I↑↑↑↑↑↓ ↑ |+→ =
[↑1→

2
↑1→

2

]
H↑↓ ↑ |0→

29/42

Table of contents
Announcements

Important change to recitation schedule
Canvas timed quiz 3 and programming assignment 1

Understanding pass-by-value and pass-by-reference
Bugs and debugging related pointers, malloc, free

Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

Future computer architectures
Bits and bytes

Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

30/42

Why binary

Figure:

31/42

Decimal, binary, octal, and hexadecimal

Decimal Binary Octal Hexadecimal
0 0b0000 0o0 0x0
1 0b0001 0o1 0x1
2 0b0010 0o2 0x2
3 0b0011 0o3 0x3
4 0b0100 0o4 0x4
5 0b0101 0o5 0x5
6 0b0110 0o6 0x6
7 0b0111 0o7 0x7

Decimal Binary Octal Hexadecimal
8 0b1000 0o10 0x8
9 0b1001 0o11 0x9

10 0b1010 0o12 0xA
11 0b1011 0o13 0xB
12 0b1100 0o14 0xC
13 0b1101 0o15 0xD
14 0b1110 0o16 0xE
15 0b1111 0o17 0xF

In C, format specifiers for printf() and fscanf():
1. decimal: ’%d’
2. binary: none
3. octal: ’%o’
4. hexadecimal: ’%x’

32/42

Decimal, binary, octal, and hexadecimal

How to represent the range of unsigned char in each?
Unsigned char is one byte, 8 bits.

1. decimal: 0 to 255
2. binary: 0b0 to 0b11111111
3. octal: 0 to 0o377 (group by 3 bits)
4. hexadecimal: 0x00 to 0xFF (group by 4 bits)

33/42

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255
???

#000000 #FFFFFF #6A757C #CC0033

34/42

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255

#000000 #FFFFFF #6A757C #CC0033

35/42

Representing characters

↭ char is a 1-byte, 8-bit
data type.

↭ ASCII is a 7-bit
encoding standard.

↭ "man ascii" to see
Linux manual.

↭ Compile and run
ascii.c to see it in
action.

↭ Some interesting
characters: 7 (bell), 10
(new line), 27 (escape).

Figure: ASCII character set. Image credit Wikimedia

36/42

Bitwise operations

Why are bitwise operations important?
↭ Network and UNIX settings using bit masks (e.g., umask)
↭ Hardware and microcontroller programming (e.g., Arduinos)
↭ Instruction set architecture encodings (e.g., ARM, x86)

37/42

Bitwise operations

˜: bitwise NOT
unsigned char a = 128

a = 0b1000_0000
˜a = ˜0b1000_0000

= 0b0111_1111
= 127

b ˜ b
0 1
1 0

38/42

Bitwise operations

&: bitwise AND

3&1 = 0b11&0b01
= 0b01
= 1

a b a & b
0 0 0
0 1 0
1 0 0
1 1 1

39/42

Bitwise operations

|: bitwise OR

3|1 = 0b11|0b01
= 0b11
= 3

2|1 = 0b10|0b01
= 0b11
= 3

a b a | b
0 0 0
0 1 1
1 0 1
1 1 1

40/42

Bitwise operations

ˆ: bitwise XOR

3 ↗ 1 = 0b11 ↗ 0b01
= 0b10
= 2

a b a ˆ b
0 0 0
0 1 1
1 0 1
1 1 0

41/42

inplaceSwap.c: Swapping variables without temp variables.

How does it work?

42/42

Don’t confuse bitwise operators with logical operators

Bitwise operators
↭ ˜
↭ &
↭ |
↭ ˆ

Logical operators
↭ !
↭ &&
↭ ||
↭ != (for bool type)

