
1/50

Data representation: Bits, Bytes, Integers

Yipeng Huang

Rutgers University

October 2, 2025

2/50

Table of contents
Bugs and debugging related pointers, malloc, free

Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

Future computer architectures
Bits and bytes

Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

3/50

Failure to free

1 #include <stdlib.h>

2 #include <stdio.h>

3

4 int main () {

5

6 int* pointer0 = malloc(sizeof(int));

7 *pointer0 = 100;

8 printf("*pointer0 = %d\n", *pointer0);

9

10 }

Note: calloc() functions like malloc(), but calloc() initializes memory to zero while
malloc() offers no such guarantee.

Memory leaks
Have you ever had to restart software or hardware to recover it?
Debug by compilation in GCC, running with Valgrind, Address Sanitizer

4/50

Use after free

1 int* pointer0 = malloc(sizeof(int));

2

3 printf("pointer0 = %p\n", pointer0);

4 *pointer0 = 100;

5 printf("*pointer0 = %d\n", *pointer0);

6

7 free(pointer0);

8 pointer0 = NULL;

9

10 printf("pointer0 = %p\n", pointer0);

11 *pointer0 = 10;

12 printf("*pointer0 = %d\n", *pointer0);

Dangling pointers
↭ One defensive programming style is to set any freed pointer to NULL.
↭ Debug by running with Valgrind, Address Sanitizer.

5/50

Pointer aliasing
1 int* pointer0 = malloc(sizeof(int));

2 int* pointer1 = pointer0;

3

4 *pointer0 = 100;

5 printf("*pointer1 = %d\n", *pointer1);

6

7 *pointer0 = 10;

8 printf("*pointer1 = %d\n", *pointer1);

9

10 free(pointer0);

11 pointer0 = NULL;

12

13 *pointer1 = 1;

14 printf("*pointer1 = %d\n", *pointer1);

Debug by running with Valgrind, Address Sanitizer
Pointer aliasing and overhead of garbage collection
↭ Java garbage collection tracks dangling pointers but costs performance.
↭ C requires programmer to manage pointers but is more difficult.

6/50

Pointer typing

1 unsigned char n = 2;

2 unsigned char m = 3;

3

4 unsigned char ** p;

5 p = calloc(n, sizeof(unsigned char));

6

7 for (int i = 0; i < n; i++)

8 p[i] = calloc(m, sizeof(unsigned char));

9

10 for (int i = 0; i < n; i++)

11 for (int j = 0; j < m; j++) {

12 p[i][j] = 10*i+j;

13 printf("p[%d][%d] = %d\n", i, j, p[i][j]);

14 }

Defend using explicit pointer casting.

7/50

Table of contents
Bugs and debugging related pointers, malloc, free

Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

Future computer architectures
Bits and bytes

Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

8/50

Non existent memory

1 #include <stdlib.h>

2 #include <stdio.h>

3

4 int main () {

5

6 int **x = malloc(sizeof(int*));

7 **x = 8;

8 printf("x = %p\n", x);

9 printf("*x = %p\n", *x);

10 printf("**x = %d\n", **x);

11 fflush(stdout);

12

13 }

Debug by running with Valgrind, Address Sanitizer

9/50

Returning null pointer

1

2 int* returnsNull () {

3 int val = 100;

4 return &val;

5 }

6

7 int main () {

8

9 int* pointer = returnsNull();

10 printf("pointer = %p\n", pointer);

11 printf("*pointer = %d\n", *pointer);

12

13 }

Prevent using -Werror compilation flag.

10/50

Table of contents
Bugs and debugging related pointers, malloc, free

Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

Future computer architectures
Bits and bytes

Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

11/50

Future computer architectures: A quantum pointer?

For n = 1, four possibilities
f0 f1 f2 f3

f(0) 0 0 1 1
f(1) 0 1 0 1

f is constant 0 f is balanced f is balanced f is constant 1

12/50

A simple physics experiment that classical computing cannot
replicate

Algorithm
David Deutsch and Richard Jozsa. Rapid solution of problems by quantum
computation. 1992.

Implementation
↭ Mach-Zehnder interferometer implementation.

https://www.st-andrews.ac.uk/physics/quvis/simulations_

html5/sims/SinglePhotonLab/SinglePhotonLab.html

https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/SinglePhotonLab.html
https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/SinglePhotonLab.html

13/50

Mathematical description of the algorithm

|0→ H↑↓ |+→ =
[

1→
2

1→
2

]






I↑↓ |+→ =
[

1→
2

1→
2

]
H↑↓ |0→

Z↑↓ |↑→ =
[

1→
2

↑1→
2

]
H↑↓ |1→

↑Z↑↑↓ ↑ |↑→ =
[↑1→

2
1→
2

]
H↑↓ ↑ |1→

↑ZZ=↑I↑↑↑↑↑↓ ↑ |+→ =
[↑1→

2
↑1→

2

]
H↑↓ ↑ |0→

14/50

The binary abstraction: classical and quantum

High, low voltage
Adds resilience against noise.

Representation as a state vector

↭
[

1
0

]
= |0→ We pronounce this "ket" 0

↭
[

0
1

]
= |1→ We pronounce this "ket" 1

15/50

The Hadamard gate

Matrix representation of Hadamard operator: H =

[
1→
2

1→
2

1→
2

↑1→
2

]

↭ H |0→ =
[

1→
2

1→
2

1→
2

↑1→
2

] [
1
0

]
=

[
1→
2

1→
2

]
= 1→

2
|0→+ 1→

2
|1→

↭ H |1→ =
[

1→
2

1→
2

1→
2

↑1→
2

] [
0
1

]
=

[
1→
2

↑1→
2

]
= 1→

2
|0→ ↑ 1→

2
|1→

16/50

Superposition
Single qubit state

↭ ω |0→+ ε |1→ =
[
ω
ε

]

↭ Amplitudes ω,ε ↔ C
↭ |ω|2 + |ε|2 = 1
↭ The above constraints require that qubit operators are unitary matrices.

Many physical phenomena can be in superposition and encode qubits
↭ Polarization of light in different directions
↭ Electron spins (Intel solid state qubits)
↭ Atom energy states (UMD, IonQ ion trap qubits)
↭ Quantized voltage and current (IBM, Google superconducting qubits)

If multiple discrete values are possible (e.g., atom energy states, voltage and
current), we pick (bottom) two for the binary abstraction.

17/50

Mathematical description of the algorithm

|0→ H↑↓ |+→ =
[

1→
2

1→
2

]






I↑↓ |+→ =
[

1→
2

1→
2

]
H↑↓ |0→

Z↑↓ |↑→ =
[

1→
2

↑1→
2

]
H↑↓ |1→

↑Z↑↑↓ ↑ |↑→ =
[↑1→

2
1→
2

]
H↑↓ ↑ |1→

↑ZZ=↑I↑↑↑↑↑↓ ↑ |+→ =
[↑1→

2
↑1→

2

]
H↑↓ ↑ |0→

18/50

Table of contents
Bugs and debugging related pointers, malloc, free

Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

Future computer architectures
Bits and bytes

Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

19/50

Why binary

Figure:

hematantternragg

Ahh

4GHz 4.0 1094g

Hy 0.2ns

fix fII

IT

analog digital quantum
mn

f bics analog digital
I

16 by

72 bib

64 by

20/50

Decimal, binary, octal, and hexadecimal

Decimal Binary Octal Hexadecimal
0 0b0000 0o0 0x0
1 0b0001 0o1 0x1
2 0b0010 0o2 0x2
3 0b0011 0o3 0x3
4 0b0100 0o4 0x4
5 0b0101 0o5 0x5
6 0b0110 0o6 0x6
7 0b0111 0o7 0x7

Decimal Binary Octal Hexadecimal
8 0b1000 0o10 0x8
9 0b1001 0o11 0x9

10 0b1010 0o12 0xA
11 0b1011 0o13 0xB
12 0b1100 0o14 0xC
13 0b1101 0o15 0xD
14 0b1110 0o16 0xE
15 0b1111 0o17 0xF

In C, format specifiers for printf() and fscanf():
1. decimal: ’%d’
2. binary: none
3. octal: ’%o’
4. hexadecimal: ’%x’

dead 65

6 10 5 1

binary

Ox if k6410 32 0 16 0 8 0 440 2 4 1

0601000001

hex
0 286 946 1

0 41
hex 0 2564 4 16 11 1

69411 75
0 413

Octal
G

1 69 0 8 elel

00101g

061111 1111

1 127 1 64 y 1 32 1 16 16ft 1 4
41 2 41 1 at

24 1 258

21/50

Decimal, binary, octal, and hexadecimal

How to represent the range of unsigned char in each?
Unsigned char is one byte, 8 bits.

1. decimal: 0 to 255
2. binary: 0b0 to 0b11111111
3. octal: 0 to 0o377 (group by 3 bits)
4. hexadecimal: 0x00 to 0xFF (group by 4 bits)

22/50

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255
???

#000000 #FFFFFF #6A757C #CC0033

23/50

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255

#000000 #FFFFFF #6A757C #CC0033

24/50

Representing characters

↭ char is a 1-byte, 8-bit
data type.

↭ ASCII is a 7-bit
encoding standard.

↭ "man ascii" to see
Linux manual.

↭ Compile and run
ascii.c to see it in
action.

↭ Some interesting
characters: 7 (bell), 10
(new line), 27 (escape).

Figure: ASCII character set. Image credit Wikimedia

25/50

Bitwise operations

Why are bitwise operations important?
↭ Network and UNIX settings using bit masks (e.g., umask)
↭ Hardware and microcontroller programming (e.g., Arduinos)
↭ Instruction set architecture encodings (e.g., ARM, x86)

26/50

Bitwise operations

˜: bitwise NOT
unsigned char a = 128

a = 0b1000_0000
˜a = ˜0b1000_0000

= 0b0111_1111
= 127

b ˜ b
0 1
1 0

27/50

Bitwise operations

&: bitwise AND

3&1 = 0b11&0b01
= 0b01
= 1

a b a & b
0 0 0
0 1 0
1 0 0
1 1 1

28/50

Bitwise operations

|: bitwise OR

3|1 = 0b11|0b01
= 0b11
= 3

2|1 = 0b10|0b01
= 0b11
= 3

a b a | b
0 0 0
0 1 1
1 0 1
1 1 1

29/50

Bitwise operations

ˆ: bitwise XOR

3 ↗ 1 = 0b11 ↗ 0b01
= 0b10
= 2

a b a ˆ b
0 0 0
0 1 1
1 0 1
1 1 0

30/50

inplaceSwap.c: Swapping variables without temp variables.

How does it work?

31/50

Don’t confuse bitwise operators with logical operators

Bitwise operators
↭ ˜
↭ &
↭ |
↭ ˆ

Logical operators
↭ !
↭ &&
↭ ||
↭ != (for bool type)

32/50

Table of contents
Bugs and debugging related pointers, malloc, free

Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

Future computer architectures
Bits and bytes

Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

33/50

Representing negative and signed integers

Ways to represent negative numbers

1. Sign magnitude
2. 1s’ complement
3. 2’s complement

34/50

Representing negative and signed integers

Sign magnitude
Flip leading bit.

35/50

Representing negative and signed integers

1s’ complement
↭ Flip all bits
↭ Addition in 1s’ complement is sound
↭ In this encoding there are 2 encodings for 0
↭ -0: 0b1111
↭ +0: 0b0000

36/50

Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

↭ what is the most positive value you can represent? 127
↭ what is the most negative value you can represent? -128
↭ how to represent -1? 11111111
↭ how to represent -2? 11111110

37/50

Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

↭ MSB: 1 for negative
↭ To make a number negative: flip all bits and add 1.
↭ Addition in 2’s complement is sound

38/50

Importance of paying attention to limits of encoding

0 2 4 6 8 10
12 14

0
2

4
6

8
10

12
14

0
4
8

12
16
20
24
28
32

Integer addition

Figure: Image credit: CS:APP

0 2 4 6 8 10 12 14
0

2
4

6
8

10
12

14

0
2
4
6
8

10
12
14
16

Unsigned addition (4-bit word)

Normal

Overflow

Figure: Image credit: CS:APP

39/50

Importance of paying attention to limits of encoding

0 2 4 6 8 10
12 14

0
2

4
6

8
10

12
14

0
4
8

12
16
20
24
28
32

Integer addition

Figure: Image credit: CS:APP

-8 -6 -4 -2 0 2 4 6
-8

-6
-4

-2
0

2
4

6

-8
-6
-4
-2
0
2
4
6
8

Two's complement addition (4-bit word)

Normal

Positive
overflow

Negative
overflow

Figure: Image credit: CS:APP

https://www.theatlantic.com/technology/archive/2014/12/

how-gangnam-style-broke-youtube/383389/

https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/
https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/

40/50

Table of contents
Bugs and debugging related pointers, malloc, free

Failure to free
Use after free
Pointer aliasing
Pointer typing

Bugs and debugging related C memory model
Non existent memory
Returning null pointer

Future computer architectures
Bits and bytes

Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

41/50

Programming assignment 2: Graphs, trees, queues, hashes

Programming Assignment 2 parts

1. hashTable: implementing a separate-chaining hash table.
2. edgelist: loading and printing a graph
3. isTree: needs either DFS (stack) or BFS (queue)
4. mst: a greedy algorithm
5. findCycle: needs either DFS (stack) or BFS (queue)
6. matChainMul: a dynamic programming approach to multiplying matrices

with minimal operations using recursion

42/50

Using graphutils.h

↭ The adjacency list representation
↭ The edgelist representation
↭ The query

43/50

Binary search tree

Figure: BST with input sequence 7, 4, 7, 0, 6, 5, 2, 3. Duplicates ignored.

44/50

Binary search tree level order traversal

Figure: Level order, left-to-right traversal would return 7, 4, 0, 6, 2, 5, 3.

45/50

Binary search tree traversal orders

Breadth-first
↭ For example: level-order.
↭ Needs a queue (first in first out).
↭ Today in class we will build a BST and a Queue.

Depth-first
↭ For example: in-order traversal, reverse-order traversal.
↭ Needs a stack (first in last out).
↭ But in the example code implementation,where is the stack data structure?

46/50

typedef

Why types are important
↭ Natural language has nouns, verbs, adjectives, adverbs.
↭ Type safety.
↭ Interpretation vs. compilation.

47/50

BSTNode

typedef struct BSTNode BSTNode;

struct BSTNode {

int key;

BSTNode* l_child; // nodes with smaller key will be in left subtree

BSTNode* r_child; // nodes with larger key will be in right subtree

};

48/50

QueueNode, Queue

// queue needed for level order traversal

typedef struct QueueNode QueueNode;

struct QueueNode {

BSTNode* data;

QueueNode* next; // pointer to next node in linked list

};

typedef struct Queue {

QueueNode* front; // front (head) of the queue

QueueNode* back; // back (tail) of the queue

} Queue;

49/50

Let’s implement enqueue()

https://visualgo.net/en/queue

↭ First, consider if queue is empty.
↭ Then, consider if queue is not empty. Only need to touch back (tail) of the

queue.

https://visualgo.net/en/queue

50/50

Let’s implement dequeue()

https://visualgo.net/en/queue

↭ First, consider if queue will become empty.
↭ Then, consider if queue will not not empty. Only need to touch front (head) of

the queue.
Subtle point: why are the function signatures (return, parameters) of enqueue()
and dequeue() the way they are?

https://visualgo.net/en/queue

