Data representation: Bits, Bytes, Integers

Yipeng Huang
Rutgers University

October 2, 2025

1/50

Table of contents
Bugs and debugging related pointers, malloc, free

Failure to free
Use after free
Pointer aliasing
Pointer typing
Bugs and debugging related C memory model
Non existent memory
Returning null pointer
Future computer architectures
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations
Integers and basic arithmetic
Representing negative and signed integers
Programming assignment 2: Graphs, trees, queues, hashes

2/50

Failure to free

#include <stdlib.h>
#include <stdio.h>

int main () {
intx pointer0 = malloc(sizeof (int));
*pointer0 = 100;

printf ("+pointer0 = %$d\n", xpointer0);

10 }

Note: calloc() functions like malloc(), but calloc() initializes memory to zero while
malloc() offers no such guarantee.

Memory leaks
Have you ever had to restart software or hardware to recover it?
Debug by compilation in GCC, running with Valgrind, Address Sanitizer

3/50

Use after free

O 0 NI O U B~ W N

—_
(e)

11
12

intx pointer0 = malloc(sizeof (int));

printf ("pointer0 = %$p\n", pointer0);
*pointer0 = 100;

printf ("+xpointer0 = %$d\n", xpointer0);

free (pointer0);
pointer0 = NULL;

printf ("pointer0 = %p\n", pointer0);
*pointer0 = 10;

printf ("+xpointer0 = $d\n", xpointer0);

Dangling pointers

» One defensive programming style is to set any freed pointer to NULL.

» Debug by running with Valgrind, Address Sanitizer.

4/50

Pointer aliasing

int* pointer0 = malloc(sizeof (int));
intx pointerl = pointer0;

*pointer0 = 100;
printf ("xpointerl = %d\n", xpointerl);

*pointer0 = 10;
printf ("xpointerl = %$d\n", <pointerl);

O 0 NI O G B W DN

—_
(@)

free(pointer0);
pointer0 = NULL;

S Y
W N =

*pointerl = 1;
printf ("xpointerl = %d\n", <pointerl);

—_
S

Debug by running with Valgrind, Address Sanitizer
Pointer aliasing and overhead of garbage collection

» Java garbage collection tracks dangling pointers but costs performance.

» (reauires procrammet to manace ptointers but is more ' difficult 5/50

Pointer typing

1 unsigned char n = 2;

2 unsigned char m = 3;

3

4 unsigned char *xx* p;

5 p = calloc(n, sizeof (unsigned char));

6

7 for (int 1 = 0; i1 < n; i++)

8 pli] = calloc(m, sizeof (unsigned char));
9

10 for (int 1 = 0; 1 < n; 1i++)

11 for (int 3 = 0; 7 < m; J++) {

12 pli] [J] = 10%i+3;

13 printf ("p[%d] [%d] = %d\n", 1, J, plil[]]);

14 }

Defend using explicit pointer casting.

6/50

Table of contents
Bugs and debugging related pointers, malloc, free

Failure to free
Use after free
Pointer aliasing
Pointer typing
Bugs and debugging related C memory model
Non existent memory
Returning null pointer
Future computer architectures
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations
Integers and basic arithmetic
Representing negative and signed integers
Programming assignment 2: Graphs, trees, queues, hashes

7/50

Non existent memory

1 #include <stdlib.h>
2 #include <stdio.h>

3
4 int main () |
5
6 int *»*xx = malloc(sizeof (intx*));
7 **X = 8;
8 printf("x = %p\n", Xx);
9 printf ("+xx = %Sp\n", *x);
10 printf ("x*x = $d\n", *%*x);
(

11 fflush (stdout) ;
12
13}

Debug by running with Valgrind, Address Sanitizer

8/50

Returning null pointer

int* returnsNull () {
int val = 100;
return &val;

int main () {
int* pointer = returnsNull ();
10 printf ("pointer = %$p\n", pointer);
11 printf ("xpointer = %d\n", xpointer);

13}

Prevent using -Werror compilation flag.

9/50

Table of contents
Bugs and debugging related pointers, malloc, free

Failure to free
Use after free
Pointer aliasing
Pointer typing
Bugs and debugging related C memory model
Non existent memory
Returning null pointer
Future computer architectures
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations
Integers and basic arithmetic
Representing negative and signed integers
Programming assignment 2: Graphs, trees, queues, hashes

10/50

Future computer architectures: A quantum pointer?

For n = 1, four possibilities

fo fi f2 f3
£(0) | O 0 1 1
f(1) | O 1 0 1
f is constant 0 | f is balanced | f is balanced | f is constant 1

11/50

A simple physics experiment that classical computing cannot
replicate

Algorithm

David Deutsch and Richard Jozsa. Rapid solution of problems by quantum
computation. 1992.

Implementation

» Mach-Zehnder interferometer implementation.
https://www.st—-andrews.ac.uk/physics/quvis/simulations_
html5/sims/SinglePhotonLab/SinglePhotonLab.html

12/50

https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/SinglePhotonLab.html
https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/SinglePhotonLab.html

Mathematical description of the algorithm

(1
I /A H
=4 = VE] = 10)
vz
. T
N ﬁ>—[@] &)
0) 2 |[+) = “P]< val
—7 NG H
v2 —+>—M LT
E 1
gzt @] 5o
k i

13/50

The binary abstraction: classical and quantum

High, low voltage

Adds resilience against noise.

Representation as a state vector
> |1 = |0) We pronounce this "ket" 0

> = |1) We pronounce this "ket" 1

O
%
1

14/50

The Hadamard gate

Matrix representation of Hadamard operator: H = [

S-Sl
SILS-

1 1 S 1
- _— 1 -

> H|0)= |2 V2 = 2| = L0+ L 1)
o) 0 | 2 v
L 1) g1 [L

> H|l)= | V2 = (V21 =210y - L)
oMo |m

15/50

Superposition
Single qubit state

>a!0>+ﬁ]1>:[g]

» Amplitudes o, 3 € C
> lal*+ (B> =1

» The above constraints require that qubit operators are unitary matrices.

Many physical phenomena can be in superposition and encode qubits

» DPolarization of light in different directions

» Electron spins (Intel solid state qubits)

> Atom energy states (UMD, IonQ) ion trap qubits)

» Quantized voltage and current (IBM, Google superconducting qubits)

If multiple discrete values are possible (e.g., atom energy states, voltage and

current), we pick (bottom) two for the binary abstraction.
16/50

Mathematical description of the algorithm

(1
I /A H
=4 = VE] = 10)
vz
. T
N ﬁ>—[@] &)
0) 2 |[+) = “P]< val
—7 NG H
v2 —+>—M LT
E 1
gzt @] 5o
k i

17/50

Table of contents
Bugs and debugging related pointers, malloc, free

Failure to free
Use after free
Pointer aliasing
Pointer typing
Bugs and debugging related C memory model
Non existent memory
Returning null pointer
Future computer architectures
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations
Integers and basic arithmetic
Representing negative and signed integers
Programming assignment 2: Graphs, trees, queues, hashes

18/50

Why binary

Everything is bits

m EachbitisOor1l

m By encoding/interpreting sets of bits in various ways
= Computers determine what to do (instructions)

= .. and represent and manipulate numbers, sets, strings, etc...
m Why bits? Electronic Implementation

= Easy to store with bistable elements

= Reliably transmitted on noisy and inaccurate wires

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

19/50

Decimal, binary, octal, and hexadecimal

Decimal Binary Octal Hexadecimal Decimal Binary Octal Hexadecimal
0 0b0000 000 0x0 8 0b1000 0010 0x8
1 0b0001 Ool 0x1 9 0b1001 0Ooll 0x9
2 0b0010 0o2 0x2 10 0b1010 0Ool2 OxA
3 0b0011 0Oo3 0x3 11 0b1011 0013 0xB
4 0b0100 Oo4 Ox4 12 0b1100 0Ool4 0xC
5 0b0101 005 0x5 13 0b1101 0015 0xD
6 0b0110 0o6 0x6 14 O0b1110 Oolé6 OxE
7 0b0111 007 0x7 15 0b1111 0ol7 OxF

In C, format specifiers for printf() and fscanf():

1. decimal: "%d’

2. binary: none
3. octal: %0’

4. hexadecimal: "%x’

20/50

Ve %f
bo+ S+ |

-

O () G OOk o Ok e Dok O 2 < [|
= 0b 00 000,

o

DX 260 + @i(é* | x|
UX,

fox Ux2st + g6 + 14|

QM‘\‘H‘C /S
Ox4 3

< (A Of (|

=) OO)@)E

Decimal, binary, octal, and hexadecimal

How to represent the range of unsigned char in each?
Unsigned char is one byte, 8 bits.

1. decimal: 0 to 255

2. binary: 0b0 to Ob11111111

3. octal: 0 to 00377 (group by 3 bits)

4. hexadecimal: 0x00 to OxFF (group by 4 bits)

21/50

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255

7?72
#000000 #FFFFFF #6A757C #CC0033

22/50

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255

#000000 #FFFFEFF #6A757C #CC0033

23/50

Representing characters

USASCIl code chart

. . b %o °o ° I ° i Yo I'o ' Y
» char is a 1-byte, 8-bit 5 s 0 n 0 | 0 | o |
data type. PP I o 2] 345 |6 |7
)
. . oOjo}jo|o 0 NUL | DLE SP 0} @ P N

» ASCII is a 7-bit oToto T T 1T Tson Tocr T 1 1o . ';
encoding standard. ojojrjo} 2 ysixjocz | * | 2 | 8 | R [b |«
o|lOo |1 | 3 ETX | DC3 # 3 Cc S c s

» "man ascii" to see o[t {ofo] 4 [eor [pca | o 4 D T d)
. o1 O] 5 ENQ | NAK % 5 3 U e u
Linux manual. s ol 6 Tack Tsvn T8 6 = v p -

. ot}) | BEL | ETB ’ 7 G w w

» Compile and run ' o oo -8, BS | caN | 8 " X : x
ascii.c to see it in i [ofo[i1] 9 [HT [EmM |) 9 1 Y i y

. 1jo}j1}j0] 10 | LF | sus »* : J 2 j z
action. r{ofir]| 11 VT | ESC + : K (K (

. . rjr1]Jojo] |2 FF FS . < L \ | |

» Some interesting T T s Ter Tes 1= . 13
characters: 7 (bell), 10 i {ol 14 [so[Rrs | . | >N |~ n [~

i1l ryas | st | us / ? 0 — o | OEL |

(new line), 27 (escape).

Figure: ASCII character set. Image credit Wikimedia

24/50

Bitwise operations

Why are bitwise operations important?

» Network and UNIX settings using bit masks (e.g., umask)
» Hardware and microcontroller programming (e.g., Arduinos)

» Instruction set architecture encodings (e.g., ARM, x86)

25/50

Bitwise operations

~: bitwise NOT

unsigned char a = 128

a = 0b1000_0000

“a = ~0061000_0000
= 000111_1111
=127

26/50

Bitwise operations

&: bitwise AND

3&1 = 0b11&0601
= 0001
=1

_ - O O

_0 = O T

—_ O O Ol

27/50

Bitwise operations

| : bitwise OR

3|1 = 0b11|0601

a b alb
= 0b11 0 0 0
=3 0 1 1

1 0 1

1 1 1

2|1 = 0b10|0601
= 0b11
=3

28/50

Bitwise operations

" bitwise XOR

3A1=0011 A 0601
= 0010
=2

—_—_ O O

_ O = Ol T

O = = O

29/50

inplaceSwap.c: Swapping variables without temp variables.

How does it work?

30/50

Don’t confuse bitwise operators with logical operators

Bitwise operators
> -
> &
> |
>

Logical operators
> |

> &&
> ||

» = (for bool type)

31/50

Table of contents
Bugs and debugging related pointers, malloc, free

Failure to free
Use after free
Pointer aliasing
Pointer typing
Bugs and debugging related C memory model
Non existent memory
Returning null pointer
Future computer architectures
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations
Integers and basic arithmetic
Representing negative and signed integers
Programming assignment 2: Graphs, trees, queues, hashes

32/50

Representing negative and signed integers

Ways to represent negative numbers

1. Sign magnitude
2. 18’ complement

3. 2’s complement

33/50

Representing negative and signed integers

Sign magnitude
Flip leading bit.

34/50

Representing negative and signed integers

1s” complement

Flip all bits

Addition in 1s” complement is sound

In this encoding there are 2 encodings for 0
-0: Ob1111

+0: 0b0000

vvyyyvyy

35/50

Representing negative and signed integers

2’s complement

signed char weight in decimal

00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

» what is the most positive value you can represent? 127

» what is the most negative value you can represent? -128

» how to represent -1? 11111111

» how to represent -2? 11111110 36/50

Representing negative and signed integers

2’s complement

signed char weight in decimal

00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

» MSB: 1 for negative
» To make a number negative: flip all bits and add 1.

» Addition in 2’s complement is sound

37/50

Importance of paying attention to limits of encoding

Integer addition Unsigned addition (4-bit word)

Figure: Image credit: CS:APP Figure: Image credit: CS:APP

38/50

Importance of paying attention to limits of encoding

Integer addition

Two's complement addition (4-bit word)

Normal
Negative

overflow

Positive
overflow

Figure: Image credit: CS:APP Figure: Image credit: CS:APP

https://www.theatlantic.com/technology/archive/2014/12/
how—gangnam-style—-broke—-youtube/383389/

39/50

https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/
https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/

Table of contents
Bugs and debugging related pointers, malloc, free

Failure to free
Use after free
Pointer aliasing
Pointer typing
Bugs and debugging related C memory model
Non existent memory
Returning null pointer
Future computer architectures
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations
Integers and basic arithmetic
Representing negative and signed integers
Programming assignment 2: Graphs, trees, queues, hashes

40/50

Programming assignment 2: Graphs, trees, queues, hashes

Programming Assignment 2 parts

1. hashTable: implementing a separate-chaining hash table.
edgelist: loading and printing a graph

isTree: needs either DFS (stack) or BFS (queue)

mst: a greedy algorithm

findCycle: needs either DFS (stack) or BFS (queue)

matChainMul: a dynamic programming approach to multiplying matrices
with minimal operations using recursion

AN L i

41/50

Using graphutils.h

» The adjacency list representation
» The edgelist representation

» The query

42/50

Binary search tree

Figure: BST with input sequence 7, 4, 7, 0, 6, 5, 2, 3. Duplicates ignored.

43/50

Binary search tree level order traversal
Figure: Level order, left-to-right traversal would return 7,4, 0, 6, 2, 5, 3.

44/50

Binary search tree traversal orders

Breadth-first
» For example: level-order.
» Needs a queue (first in first out).

» Today in class we will build a BST and a Queue.

Depth-first
» For example: in-order traversal, reverse-order traversal.

» Needs a stack (first in last out).

» But in the example code implementation,where is the stack data structure?

45/50

typedet

Why types are important

» Natural language has nouns, verbs, adjectives, adverbs.
> Type safety.

» Interpretation vs. compilation.

46/50

BSTNode

typedef struct BSTNode BSTNode;
struct BSTNode {
int key;
BSTNode* 1_child; // nodes with smaller key will be in left s
BSTNode* r_child; // nodes with larger key will be in right s
I

47/50

QueueNode, Queue

// queue needed for level order traversal
typedef struct QueueNode QueueNode;
struct QueueNode {
BSTNodex data;
QueueNode* next; // pointer to next node in linked list
b
typedef struct Queue
QueueNodex front; // front (head) of the queue
QueueNode* back; // back (tail) of the queue
} Queue;

48/50

Let’s implement enqueue ()

https://visualgo.net/en/queue
» First, consider if queue is empty.

» Then, consider if queue is not empty. Only need to touch back (tail) of the
queue.

49/50

https://visualgo.net/en/queue

Let’s implement dequeue ()

https://visualgo.net/en/queue
» First, consider if queue will become empty.

» Then, consider if queue will not not empty. Only need to touch front (head) of
the queue.

Subtle point: why are the function signatures (return, parameters) of enqueue ()
and dequeue () the way they are?

50/50

https://visualgo.net/en/queue

