
1/44

Data representation: Bits, Bytes, Integers

Yipeng Huang

Rutgers University

October 7, 2025

2/44

Table of contents
Bits and bytes

Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation
Programming assignment 2: Graphs, trees, queues, hashes

Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

matChainMul.c: Minimum number of multiplies needed for matrix chain
multiplication

3/44

Why binary

Figure:

4/44

Decimal, binary, octal, and hexadecimal

Decimal Binary Octal Hexadecimal
0 0b0000 0o0 0x0
1 0b0001 0o1 0x1
2 0b0010 0o2 0x2
3 0b0011 0o3 0x3
4 0b0100 0o4 0x4
5 0b0101 0o5 0x5
6 0b0110 0o6 0x6
7 0b0111 0o7 0x7

Decimal Binary Octal Hexadecimal
8 0b1000 0o10 0x8
9 0b1001 0o11 0x9

10 0b1010 0o12 0xA
11 0b1011 0o13 0xB
12 0b1100 0o14 0xC
13 0b1101 0o15 0xD
14 0b1110 0o16 0xE
15 0b1111 0o17 0xF

In C, format specifiers for printf() and fscanf():
1. decimal: ’%d’
2. binary: none
3. octal: ’%o’
4. hexadecimal: ’%x’

5/44

Decimal, binary, octal, and hexadecimal

How to represent the range of unsigned char in each?
Unsigned char is one byte, 8 bits.

1. decimal: 0 to 255
2. binary: 0b0 to 0b11111111
3. octal: 0 to 0o377 (group by 3 bits)
4. hexadecimal: 0x00 to 0xFF (group by 4 bits)

6/44

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255
???

#000000 #FFFFFF #6A757C #CC0033
a co

06861810 106 OXCC 12616129212.2040285 R
5 208 07571645 1215117 000 00287 G 255285 100 071 71612124 0633 31643.510285 B 1 D

100 9

7/44

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255

#000000 #FFFFFF #6A757C #CC0033

so

8/44

Representing characters

↭ char is a 1-byte, 8-bit
data type.

↭ ASCII is a 7-bit
encoding standard.

↭ "man ascii" to see
Linux manual.

↭ Compile and run
ascii.c to see it in
action.

↭ Some interesting
characters: 7 (bell), 10
(new line), 27 (escape).

Figure: ASCII character set. Image credit Wikimedia

9/44

Bitwise operations

Why are bitwise operations important?
↭ Network and UNIX settings using bit masks (e.g., umask)
↭ Hardware and microcontroller programming (e.g., Arduinos)
↭ Instruction set architecture encodings (e.g., ARM, x86)

10/44

Bitwise operations

˜: bitwise NOT
unsigned char a = 128

a = 0b1000_0000
˜a = ˜0b1000_0000

= 0b0111_1111
= 127

b ˜ b
0 1
1 0

11/44

Bitwise operations

&: bitwise AND

3&1 = 0b11&0b01
= 0b01
= 1

a b a & b
0 0 0
0 1 0
1 0 0
1 1 1

12/44

Bitwise operations

|: bitwise OR

3|1 = 0b11|0b01
= 0b11
= 3

2|1 = 0b10|0b01
= 0b11
= 3

a b a | b
0 0 0
0 1 1
1 0 1
1 1 1

13/44

Bitwise operations

ˆ: bitwise XOR

3 → 1 = 0b11 → 0b01
= 0b10
= 2

a b a ˆ b
0 0 0
0 1 1
1 0 1
1 1 0

14/44

inplaceSwap.c: Swapping variables without temp variables.

How does it work?

15/44

Don’t confuse bitwise operators with logical operators

Bitwise operators
↭ ˜
↭ &
↭ |
↭ ˆ

Logical operators
↭ !
↭ &&
↭ ||
↭ != (for bool type)

16/44

Table of contents
Bits and bytes

Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation
Programming assignment 2: Graphs, trees, queues, hashes

Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

matChainMul.c: Minimum number of multiplies needed for matrix chain
multiplication

17/44

Representing negative and signed integers

Ways to represent negative numbers

1. Sign magnitude
2. 1s’ complement
3. 2’s complement

18/44

Representing negative and signed integers

Sign magnitude
Flip leading bit.

signedchar I byte 8bits

mostney value Zero largestposine
0600000000 030111 111oblitt 1111 0610000000 127

127

negone 1 one 1
Ob0000001 0600000001

1 1

Ob 000 0001
ob

19/44

Representing negative and signed integers

1s’ complement
↭ Flip all bits
↭ Addition in 1s’ complement is sound
↭ In this encoding there are 2 encodings for 0
↭ -0: 0b1111
↭ +0: 0b0000

as negaton
rembereer to add

backthecamy

Is camp

nostrg
number zero mostposnumber

Ob 000 0000
060000 0000 060111 fill

127
Ob 111 1111 27

negone posone
061111 1110 060000 000

4 1
061111 1110

4 060000 0001

1111 0

4 2

obiiii

iico.EE
oobcooooH

20/44

Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

↭ what is the most positive value you can represent? 127
↭ what is the most negative value you can represent? -128
↭ how to represent -1? 11111111
↭ how to represent -2? 11111110

21/44

Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

↭ MSB: 1 for negative
↭ To make a number negative: flip all bits and add 1.
↭ Addition in 2’s complement is sound

22/44

Importance of paying attention to limits of encoding

0 2 4 6 8 10
12 14

0
2

4
6

8
10

12
14

0
4
8

12
16
20
24
28
32

Integer addition

Figure: Image credit: CS:APP

0 2 4 6 8 10 12 14
0

2
4

6
8

10
12

14

0
2
4
6
8

10
12
14
16

Unsigned addition (4-bit word)

Normal

Overflow

Figure: Image credit: CS:APP

23/44

Importance of paying attention to limits of encoding

0 2 4 6 8 10
12 14

0
2

4
6

8
10

12
14

0
4
8

12
16
20
24
28
32

Integer addition

Figure: Image credit: CS:APP

-8 -6 -4 -2 0 2 4 6
-8

-6
-4

-2
0

2
4

6

-8
-6
-4
-2
0
2
4
6
8

Two's complement addition (4-bit word)

Normal

Positive
overflow

Negative
overflow

Figure: Image credit: CS:APP

https://www.theatlantic.com/technology/archive/2014/12/

how-gangnam-style-broke-youtube/383389/

https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/
https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/

24/44

Table of contents
Bits and bytes

Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation
Programming assignment 2: Graphs, trees, queues, hashes

Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

matChainMul.c: Minimum number of multiplies needed for matrix chain
multiplication

25/44

Unsigned fixed-point binary for fractions

�
�
	

bm	

 bm–1	

 b2	

 b1	

 b0	

 b–1	

 b–2	

 b–3	

 b–n+1	

�
�
	

 .	

1	

2	

4	

2m–1	

2m	

�
�
	

�
�
	

1/2	

1/4	

1/8	

1/2n–1	

b–n	

1/2n	

Figure: Fractional binary. Image credit CS:APP

26/44

Unsigned fixed-point binary for fractions

unsigned fixed-point char example weight in decimal
1000.0000 8
0100.0000 4
0010.0000 2
0001.0000 1
0000.1000 0.5
0000.0100 0.25
0000.0010 0.125
0000.0001 0.0625

Table: Weight of each bit in an example fixed-point binary number

↭ .625 = .5 + .125 = 0000.10102

↭ 1001.10002 = 9 + .5 = 9.5

27/44

Signed fixed-point binary for fractions

signed fixed-point char example weight in decimal
1000.0000 -8
0100.0000 4
0010.0000 2
0001.0000 1
0000.1000 0.5
0000.0100 0.25
0000.0010 0.125
0000.0001 0.0625

Table: Weight of each bit in an example fixed-point binary number

↭ ↑.625 = ↑8 + 4 + 2 + 1 + 0 + .25 + .125 = 1111.01102

↭ 1001.10002 = ↑8 + 1 + .5 = ↑6.5

28/44

Limitations of fixed-point

↭ Can only represent numbers of the form x/2k

↭ Cannot represent numbers with very large magnitude (great range) or very
small magnitude (great precision)

29/44

Bit shifting

<< N Left shift by N bits
↭ multiplies by 2N

↭ 2 << 3 = 0000_00102 << 3 = 0001_00002 = 16 = 2 ↓ 23

↭ ↑2 << 3 = 1111_11102 << 3 = 1111_00002 = ↑16 = ↑2 ↓ 23

>> N Right shift by N bits
↭ divides by 2N

↭ 16 >> 3 = 0001_00002 >> 3 = 0000_00102 = 2 = 16/23

↭ ↑16 >> 3 = 1111_00002 >> 3 = 1111_11102 = ↑2 = ↑16/23

30/44

Table of contents
Bits and bytes

Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation
Programming assignment 2: Graphs, trees, queues, hashes

Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

matChainMul.c: Minimum number of multiplies needed for matrix chain
multiplication

31/44

Programming assignment 2: Graphs, trees, queues, hashes

Programming Assignment 2 parts

1. hashTable: implementing a separate-chaining hash table.
2. edgelist: loading and printing a graph
3. isTree: needs either DFS (stack) or BFS (queue)
4. mst: a greedy algorithm
5. findCycle: needs either DFS (stack) or BFS (queue)
6. matChainMul: a dynamic programming approach to multiplying matrices

with minimal operations using recursion

32/44

Using graphutils.h

↭ The adjacency list representation
↭ The edgelist representation
↭ The query

33/44

Binary search tree

Figure: BST with input sequence 7, 4, 7, 0, 6, 5, 2, 3. Duplicates ignored.

34/44

Binary search tree level order traversal

Figure: Level order, left-to-right traversal would return 7, 4, 0, 6, 2, 5, 3.

35/44

Binary search tree traversal orders

Breadth-first
↭ For example: level-order.
↭ Needs a queue (first in first out).
↭ Today in class we will build a BST and a Queue.

Depth-first
↭ For example: in-order traversal, reverse-order traversal.
↭ Needs a stack (first in last out).
↭ But in the example code implementation,where is the stack data structure?

36/44

typedef

Why types are important
↭ Natural language has nouns, verbs, adjectives, adverbs.
↭ Type safety.
↭ Interpretation vs. compilation.

37/44

BSTNode

typedef struct BSTNode BSTNode;

struct BSTNode {

int key;

BSTNode* l_child; // nodes with smaller key will be in left subtree

BSTNode* r_child; // nodes with larger key will be in right subtree

};

38/44

QueueNode, Queue

// queue needed for level order traversal

typedef struct QueueNode QueueNode;

struct QueueNode {

BSTNode* data;

QueueNode* next; // pointer to next node in linked list

};

typedef struct Queue {

QueueNode* front; // front (head) of the queue

QueueNode* back; // back (tail) of the queue

} Queue;

39/44

Let’s implement enqueue()

https://visualgo.net/en/queue

↭ First, consider if queue is empty.
↭ Then, consider if queue is not empty. Only need to touch back (tail) of the

queue.

https://visualgo.net/en/queue

40/44

Let’s implement dequeue()

https://visualgo.net/en/queue

↭ First, consider if queue will become empty.
↭ Then, consider if queue will not not empty. Only need to touch front (head) of

the queue.
Subtle point: why are the function signatures (return, parameters) of enqueue()
and dequeue() the way they are?

https://visualgo.net/en/queue

41/44

Table of contents
Bits and bytes

Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation
Programming assignment 2: Graphs, trees, queues, hashes

Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert(), delete()
Linked list implementation of a queue: QueueNode, Queue, enqueue(),
dequeue()

matChainMul.c: Minimum number of multiplies needed for matrix chain
multiplication

42/44

matChainMul.c: Minimum number of multiplies needed for
matrix chain multiplication

Learning objectives
↭ Review and master recursion.
↭ Array subsetting using pointer arithmetic.
↭ Using pass-by-reference to return computed results.
↭ A new algorithm that most classmates have not seen before.

Cost of multiplying matrices: the number of multiplies
↭ Al→m ↔ Bm→n

↭ Needs l ↔ m ↔ n number of multiplies
↭ (Well-kept secret: fewer multiplications possible, see Strassen’s algorithm)

43/44

matChainMul.c: Minimum number of multiplies needed for
matrix chain multiplication

A → B → C =
[
a0,0 a0,1

]
1→2 →

[
b0,0

b1,0

]

2→1
→

[
c0,0 c0,1

]
1→2

Parenthesization 1: 4+4 = 8 multiplies

A → (B → C) =
[
a0,0 a0,1

]
1→2 →

[
b0,0c0,0 b0,0c0,1

b1,0c0,0 b1,0c0,1

]

2→2

=
[(

a0,0b0,0c0,0 + a0,1b1,0c0,0

) (
a0,0b0,0c0,1 + a0,1b1,0c0,1

)]

1→2

Parenthesization 2: 2+2 = 4 multiplies

(A → B)→ C =
(

a0,0b0,0 + a0,1b1,0

)
→

[
c0,0 c0,1

]
1→2

=
[(

a0,0b0,0 + a0,1b1,0

)
c0,0

(
a0,0b0,0 + a0,1b1,0

)
c0,1

]

1→2

44/44

matChainMul.c: Minimum number of multiplies needed for
matrix chain multiplication

A ↔ B ↔ C ↔ D

First partitioning
↭ A(BCD); but what is cost of finding

(BCD)? Needs decomposition.
↭ (AB)(CD)

↭ (ABC)D; but what is cost of finding
(ABC)? Needs decomposition.

Second partitioning
↭ A(B(CD))

↭ A((BC)D)

↭ (AB)(CD)

↭ (A(BC))D
↭ ((AB)C)D

