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Why binary

Everything is bits

m EachbitisOor1l

m By encoding/interpreting sets of bits in various ways
= Computers determine what to do (instructions)
= .. and represent and manipulate numbers, sets, strings, etc...
m Why bits? Electronic Implementation
= Easy to store with bistable elements
= Reliably transmitted on noisy and inaccurate wires

— 0 > le 1 >| — Q0 —
1.1V —
0.9v —
0.0V —
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3
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Decimal, binary, octal, and hexadecimal

Decimal Binary Octal Hexadecimal  Decimal Binary Octal Hexadecimal
0 0b0000 000 0x0 8 0b1000 0010 0x8
1 0b0001  Ool 0x1 9 0b1001 0Ooll 0x9
2 0b0010  0o2 0x2 10 0b1010 0Ool2 OxA
3 0b0011  0Oo3 0x3 11 0b1011 0013 0xB
4 0b0100  Oo4 Ox4 12 0b1100 0Ool4 0xC
5 0b0101 005 0x5 13 0b1101 0015 0xD
6 0b0110  0o6 0x6 14 O0b1110 Oolé6 OxE
7 0b0111 007 0x7 15 0b1111 0ol7 OxF

In C, format specifiers for printf() and fscanf():

1. decimal: "%d’

2. binary: none
3. octal: %0’

4. hexadecimal: "%x’
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Decimal, binary, octal, and hexadecimal

How to represent the range of unsigned char in each?
Unsigned char is one byte, 8 bits.

1. decimal: 0 to 255

2. binary: 0b0 to Ob11111111

3. octal: 0 to 00377 (group by 3 bits)

4. hexadecimal: 0x00 to OxFF (group by 4 bits)
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Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255

7?72
#000000 #FFFFFF #6A757C #CC0033

/257 K o O 6A-GKlbe0- 106 k(= (2Kt et oty
o/z5t G Sx6152268 0«5 TalbS - (1145:1) Q) N7,
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Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255

#000000 #FFFFEFF #6A757C #CC0033

—— =
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Representing characters

USASCIl code chart

. . b °0 |© ° I ° i "o |'o " v
» char is a 1-byte, 8-bit AP ol i "of "i] %ol "] Tof
data t s Palbaofo N b s 3 4 s |6 |7
ata type. vl oo |t |Rowy
. ) olololo| O |nNuL [oLe | sP | o© @ P \ P
> ASCIlis a 7-bit olo]o]1 | |son | oci | 1 A Q o q
encoding standard. olo[Jo] 2 [sx|ocz | “ [ 2 [ 8 [ R [ b [ *
y olo| ]| 3 |eTx | pCc3 # 3 o S c s
» "man ascii' to see ol1{olol 4 [eor [pca | o a D T d 1
L. 1 o1 O] 5 ENQ | NAK % 5 3 U e u
Imnux manual. ol [vlol 6 [ack |syN | & 6 F v f v
. o1l 7 BEL | ETB ’ 7 G w 9 w
> Complle and run 1{ojoflo] 8 | 85 [can | « 8 H X h x
ascii.c to see it Iin i {oJo[1 ] 9 [nT | Em ) 9 1 Y i y
. 1jo}j1}j0] 10 | LF | sus »* : J 2 j z
action. r{of{ir v ] 11 VT | ESC + : K C K (
> . . rjir]Jojo] 12 FF FS . < L \ l |
Some interesting o T Ter Tes 1= T T3
characters: 7 (bell), 10 i {ol 14 [so[Rrs | . | >N |~ n [~
i1l ryas | st | us / ? 0 — o | OEL |

(new line), 27 (escape).

Figure: ASCII character set. Image credit Wikimedia
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Bitwise operations

Why are bitwise operations important?

» Network and UNIX settings using bit masks (e.g., umask)
» Hardware and microcontroller programming (e.g., Arduinos)

» Instruction set architecture encodings (e.g., ARM, x86)
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Bitwise operations

~: bitwise NOT

unsigned char a = 128

a = 0b1000_0000

“a = ~0061000_0000
= 000111_1111
=127
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Bitwise operations

&: bitwise AND

3&1 = 0b11&0601
= 0001
=1

_ - O O

_0 = O T

—_ O O Ol
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Bitwise operations

| : bitwise OR

3|1 = 0b11|0601

a b alb
= 0b11 0 0 0
=3 0 1 1

1 0 1

1 1 1

2|1 = 0b10|0601
= 0b11
=3
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Bitwise operations

" bitwise XOR

3A1=0011 A 0601
= 0010
=2

—_—_ O O

_ O = Ol T

O = = O
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inplaceSwap.c: Swapping variables without temp variables.

How does it work?
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Don’t confuse bitwise operators with logical operators

Bitwise operators
> -
> &
> |
>

Logical operators
> |

> &&
> ||

» = (for bool type)
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Representing negative and signed integers

Ways to represent negative numbers

1. Sign magnitude
2. 18’ complement

3. 2’s complement
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Representing negative and signed integers

S(Sjvtl:é] chow [ Pf}ter & bt
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Representing negative and signed integers

1s” complement

> Flipallbits (1] VWGa7MN
—» Addition in 1s” complement is sound 0/ @WLW\‘ 6 Q:LJ

» In this encoding there are 2 encodings for 0 @0(9_ ‘%uu CD’”‘U

> -0: Ob1111
» +0: 0b0000

19/44



[s” Com)

st | wbor o el pos U

)b 1000 - 0000 0p00700090 ObOTtI_ti(y

f_,‘Z"} Qlo“\(__(l(\ 2(27
W%W W@M\
Coll 11 (117 O/goooog_fo@@(
u“l
“fl O L)Q”OOO_Q@@ l
h @B((\\_((\\-_Z O
42

' R (r

Olo((l(g,\((()
+/ Q) oooo_ 00 [ O

1L,0000 00 0O




Representing negative and signed integers

2’s complement

signed char weight in decimal

00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

» what is the most positive value you can represent? 127

» what is the most negative value you can represent? -128

» how to represent -1? 11111111

» how to represent -2? 11111110 20/44



Representing negative and signed integers

2’s complement

signed char weight in decimal

00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

» MSB: 1 for negative
» To make a number negative: flip all bits and add 1.

» Addition in 2’s complement is sound
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Importance of paying attention to limits of encoding

Integer addition Unsigned addition (4-bit word)

Figure: Image credit: CS:APP Figure: Image credit: CS:APP
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Importance of paying attention to limits of encoding

Integer addition

Two's complement addition (4-bit word)

Normal
Negative

overflow

Positive
overflow

Figure: Image credit: CS:APP Figure: Image credit: CS:APP

https://www.theatlantic.com/technology/archive/2014/12/
how—gangnam-style—-broke—-youtube/383389/
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Unsigned fixed-point binary for fractions

2m
2m—1

4

=

b b XX b2 bl bO ‘b—l b_2 b_3 XX b—n+1 b—n
]

(\®)

1/2
1/4
1/8

1/2m1
1727

Figure: Fractional binary. Image credit CS:APP
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Unsigned fixed-point binary for fractions

unsigned fixed-point char example

weight in decimal

1000.0000
0100.0000
0010.0000
0001.0000
0000.1000
0000.0100
0000.0010
0000.0001

8

4

2

1

0.5
0.25
0.125
0.0625

Table: Weight of each bit in an example fixed-point binary number

» 625 = .5+ .125 = 0000.1010,
» 1001.1000p =9+ .5=9.5
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Signed fixed-point binary for fractions

signed fixed-point char example

weight in decimal

1000.0000
0100.0000
0010.0000
0001.0000
0000.1000
0000.0100
0000.0010
0000.0001

-8

4

2

1

0.5
0.25
0.125
0.0625

Table: Weight of each bit in an example fixed-point binary number

» —625=-8+4+2+1+4+0+ .25+ .125=1111.0110,

» 1001.1000p = -8 4+1+ .5 = —6.5
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Limitations of fixed-point

» Can only represent numbers of the form x/2*

» Cannot represent numbers with very large magnitude (great range) or very
small magnitude (great precision)
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Bit shifting

<< N Left shift by N bits

» multiplies by 2V
> 2 << 3=0000_0010, << 3 =0001_0000, =16 = 2 % 23
> 2 << 3=1111_1110, << 3=1111_0000, = —16 = —2 % 23

>> N Right shift by N bits
» divides by 2N
> 16 >> 3 =0001_0000, >> 3 = 0000_0010, =2 = 16/2°
> —16 >>3=1111_0000; >>3=1111_1110, = -2 = —16/23
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Programming assignment 2: Graphs, trees, queues, hashes

Programming Assignment 2 parts

1. hashTable: implementing a separate-chaining hash table.
edgelist: loading and printing a graph

isTree: needs either DFS (stack) or BFS (queue)

mst: a greedy algorithm

findCycle: needs either DFS (stack) or BFS (queue)

matChainMul: a dynamic programming approach to multiplying matrices
with minimal operations using recursion

AN L i
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Using graphutils.h

» The adjacency list representation
» The edgelist representation

» The query
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Binary search tree

Figure: BST with input sequence 7, 4, 7, 0, 6, 5, 2, 3. Duplicates ignored.
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Binary search tree level order traversal
Figure: Level order, left-to-right traversal would return 7,4, 0, 6, 2, 5, 3.
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Binary search tree traversal orders

Breadth-first
» For example: level-order.
» Needs a queue (first in first out).

» Today in class we will build a BST and a Queue.

Depth-first
» For example: in-order traversal, reverse-order traversal.

» Needs a stack (first in last out).

» But in the example code implementation,where is the stack data structure?
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typedet

Why types are important

» Natural language has nouns, verbs, adjectives, adverbs.
> Type safety.

» Interpretation vs. compilation.
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BSTNode

typedef struct BSTNode BSTNode;
struct BSTNode {
int key;
BSTNode* 1_child; // nodes with smaller key will be in left s
BSTNode* r_child; // nodes with larger key will be in right s
I
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QueueNode, Queue

// queue needed for level order traversal
typedef struct QueueNode QueueNode;
struct QueueNode {
BSTNodex data;
QueueNode* next; // pointer to next node in linked list
b
typedef struct Queue
QueueNodex front; // front (head) of the queue
QueueNode* back; // back (tail) of the queue
} Queue;
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Let’s implement enqueue ()

https://visualgo.net/en/queue
» First, consider if queue is empty.

» Then, consider if queue is not empty. Only need to touch back (tail) of the
queue.
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https://visualgo.net/en/queue

Let’s implement dequeue ()

https://visualgo.net/en/queue
» First, consider if queue will become empty.

» Then, consider if queue will not not empty. Only need to touch front (head) of
the queue.

Subtle point: why are the function signatures (return, parameters) of enqueue ()
and dequeue () the way they are?
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https://visualgo.net/en/queue
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matChainMul.c: Minimum number of multiplies needed for
matrix chain multiplication

Learning objectives

» Review and master recursion.
> Array subsetting using pointer arithmetic.
» Using pass-by-reference to return computed results.

» A new algorithm that most classmates have not seen before.

Cost of multiplying matrices: the number of multiplies

> Ajxm X Bmxn
» Needs ! x m x n number of multiplies
> (Well-kept secret: fewer multiplications possible, see Strassen’s algorithm)
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matChainMul.c: Minimum number of multiplies needed for

matrix chain multiplication

b
A X BxC=[ap ﬂo,l]lxz X [bfjglle x [co Co’l]lxz

Parenthesization 1: 4+4 = 8 multiplies

bo.oC bo.oc
Ax (BxC)= [go,o aoJ]le % [bo,oco,o bo,oco,l
1,0€0,0 1,060,155

= [(ﬂo,obo,oco,o + ﬂ0,1b1,oCO,o) (ﬂo,obo,0C0,1 + a0,1b1,000,1)} o
X

Parenthesization 2: 242 = 4 multiplies

(AxB)xC= (ao,obo,o + ﬂo,lbl,o) X [coo  co]

1x2

= [(ﬂo,obo,o + Elo,1b1,o)Co,0 (ﬂo,obo,o + 610,1171,0)60,1}

1x2
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matChainMul.c: Minimum number of multiplies needed for

matrix chain multiplication

AXBxCxD

First partitioning

» A(BCD); but what is cost of finding
(BCD)? Needs decomposition.

» (AB)(CD)

» (ABC)D; but what is cost of finding
(ABC)? Needs decomposition.

Second partitioning
> A(B(CD))
» A((BC)D)
> (AB)(CD)
» (A(BC))D
» ((AB)C)D
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