Data representation: Bits, Bytes, Integers

Yipeng Huang
Rutgers University

October 7, 2025

1/44

Table of contents
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),

dequeue ()
matChainMul.c: Minimum number of multiplies needed for matrix chain

multiplication
2/44

Why binary

Everything is bits

m EachbitisOor1l

m By encoding/interpreting sets of bits in various ways
= Computers determine what to do (instructions)
= .. and represent and manipulate numbers, sets, strings, etc...
m Why bits? Electronic Implementation
= Easy to store with bistable elements
= Reliably transmitted on noisy and inaccurate wires

— 0 > le 1 >| — Q0 —
1.1V —
0.9v —
0.0V —
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

3/44

Decimal, binary, octal, and hexadecimal

Decimal Binary Octal Hexadecimal Decimal Binary Octal Hexadecimal
0 0b0000 000 0x0 8 0b1000 0010 0x8
1 0b0001 Ool 0x1 9 0b1001 0Ooll 0x9
2 0b0010 0o2 0x2 10 0b1010 0Ool2 OxA
3 0b0011 0Oo3 0x3 11 0b1011 0013 0xB
4 0b0100 Oo4 Ox4 12 0b1100 0Ool4 0xC
5 0b0101 005 0x5 13 0b1101 0015 0xD
6 0b0110 0o6 0x6 14 O0b1110 Oolé6 OxE
7 0b0111 007 0x7 15 0b1111 0ol7 OxF

In C, format specifiers for printf() and fscanf():

1. decimal: "%d’

2. binary: none
3. octal: %0’

4. hexadecimal: "%x’

4/44

Decimal, binary, octal, and hexadecimal

How to represent the range of unsigned char in each?
Unsigned char is one byte, 8 bits.

1. decimal: 0 to 255

2. binary: 0b0 to Ob11111111

3. octal: 0 to 00377 (group by 3 bits)

4. hexadecimal: 0x00 to OxFF (group by 4 bits)

5/44

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255

7?72
#000000 #FFFFFF #6A757C #CC0033

/257 K o O 6A-GKlbe0- 106 k(= (2Kt et oty
o/z5t G Sx6152268 0«5 TalbS - (1145:1) Q) N7,
2wt ZSK‘/M: (OQQZB O}<7Cs7;(((9+(2-, (24 @QTZ ; 346‘“ Q—'l
Q/Z@’“ £ (OQ%% @
(0076

(007vﬂ

6/44

Often encountered use of hexadecimal: RGB colors

Red, green, blue values ranging from 0-255

#000000 #FFFFEFF #6A757C #CC0033

—— =

7/44

Representing characters

USASCIl code chart

. . b °0 |© ° I ° i "o |'o " v
» char is a 1-byte, 8-bit AP ol i "of "i] %ol "] Tof
data t s Palbaofo N b s 3 4 s |6 |7
ata type. vl oo |t |Rowy
.) olololo| O |nNuL [oLe | sP | o© @ P \ P
> ASCIlis a 7-bit olo]o]1 | |son | oci | 1 A Q o q
encoding standard. olo[Jo] 2 [sx|ocz | “ [2 [8 [R [b [*
y olo|]| 3 |eTx | pCc3 # 3 o S c s
» "man ascii' to see ol1{olol 4 [eor [pca | o a D T d 1
L. 1 o1 O] 5 ENQ | NAK % 5 3 U e u
Imnux manual. ol [vlol 6 [ack |syN | & 6 F v f v
. o1l 7 BEL | ETB ’ 7 G w 9 w
> Complle and run 1{ojoflo] 8 | 85 [can | « 8 H X h x
ascii.c to see it Iin i {oJo[1] 9 [nT | Em) 9 1 Y i y
. 1jo}j1}j0] 10 | LF | sus »* : J 2 j z
action. r{of{ir v] 11 VT | ESC + : K C K (
> . . rjir]Jojo] 12 FF FS . < L \ l |
Some interesting o T Ter Tes 1= T T3
characters: 7 (bell), 10 i {ol 14 [so[Rrs | . | >N |~ n [~
i1l ryas | st | us / ? 0 — o | OEL |

(new line), 27 (escape).

Figure: ASCII character set. Image credit Wikimedia

8/44

Bitwise operations

Why are bitwise operations important?

» Network and UNIX settings using bit masks (e.g., umask)
» Hardware and microcontroller programming (e.g., Arduinos)

» Instruction set architecture encodings (e.g., ARM, x86)

9/44

Bitwise operations

~: bitwise NOT

unsigned char a = 128

a = 0b1000_0000

“a = ~0061000_0000
= 000111_1111
=127

10/44

Bitwise operations

&: bitwise AND

3&1 = 0b11&0601
= 0001
=1

_ - O O

_0 = O T

—_ O O Ol

11/44

Bitwise operations

| : bitwise OR

3|1 = 0b11|0601

a b alb
= 0b11 0 0 0
=3 0 1 1

1 0 1

1 1 1

2|1 = 0b10|0601
= 0b11
=3

12/44

Bitwise operations

" bitwise XOR

3A1=0011 A 0601
= 0010
=2

—_—_ O O

_ O = Ol T

O = = O

13/44

inplaceSwap.c: Swapping variables without temp variables.

How does it work?

14/44

Don’t confuse bitwise operators with logical operators

Bitwise operators
> -
> &
> |
>

Logical operators
> |

> &&
> ||

» = (for bool type)

15/44

Table of contents
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),

dequeue ()
matChainMul.c: Minimum number of multiplies needed for matrix chain

multiplication
16/44

Representing negative and signed integers

Ways to represent negative numbers

1. Sign magnitude
2. 18’ complement

3. 2’s complement

17/44

Representing negative and signed integers

S(Sjvtl:é] chow [Pf}ter & bt

w\a&éwﬂ Jolud Za0 Z —
I I W
000_000 _
Sign magnitude Ob(000_0000 23

< -2
Flip leading bit.

VL%OV(L '1 OVtQ,i

Olylooo_090 (Dhoooo. 0o |

18/44

Representing negative and signed integers

1s” complement

> Flipallbits (1] VWGa7MN
—» Addition in 1s” complement is sound 0/ @WLW\‘ 6 Q:LJ

» In this encoding there are 2 encodings for 0 @0(9_ ‘%uu CD’”‘U

> -0: Ob1111
» +0: 0b0000

19/44

[s” Com)

st | wbor o el pos U

)b 1000 - 0000 0p00700090 ObOTtI_ti(y

f_,‘Z"} Qlo“\(__(l(\ 2(27
W%W W@M\
Coll 11 (117 O/goooog_fo@@(
u“l
“fl O L)Q”OOO_Q@@ l
h @B((_((\\-_Z O
42

' R (r

Olo((l(g,\((()
+/ Q) oooo_ 00 [O

1L,0000 00 0O

Representing negative and signed integers

2’s complement

signed char weight in decimal

00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

» what is the most positive value you can represent? 127

» what is the most negative value you can represent? -128

» how to represent -1? 11111111

» how to represent -2? 11111110 20/44

Representing negative and signed integers

2’s complement

signed char weight in decimal

00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

» MSB: 1 for negative
» To make a number negative: flip all bits and add 1.

» Addition in 2’s complement is sound

21/44

Importance of paying attention to limits of encoding

Integer addition Unsigned addition (4-bit word)

Figure: Image credit: CS:APP Figure: Image credit: CS:APP

22/44

Importance of paying attention to limits of encoding

Integer addition

Two's complement addition (4-bit word)

Normal
Negative

overflow

Positive
overflow

Figure: Image credit: CS:APP Figure: Image credit: CS:APP

https://www.theatlantic.com/technology/archive/2014/12/
how—gangnam-style—-broke—-youtube/383389/

23/44

https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/
https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/

Table of contents
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),

dequeue ()
matChainMul.c: Minimum number of multiplies needed for matrix chain

multiplication
24/44

Unsigned fixed-point binary for fractions

2m
2m—1

4

=

b b XX b2 bl bO ‘b—l b_2 b_3 XX b—n+1 b—n
]

(\®)

1/2
1/4
1/8

1/2m1
1727

Figure: Fractional binary. Image credit CS:APP

25/44

Unsigned fixed-point binary for fractions

unsigned fixed-point char example

weight in decimal

1000.0000
0100.0000
0010.0000
0001.0000
0000.1000
0000.0100
0000.0010
0000.0001

8

4

2

1

0.5
0.25
0.125
0.0625

Table: Weight of each bit in an example fixed-point binary number

» 625 = .5+ .125 = 0000.1010,
» 1001.1000p =9+ .5=9.5

26/44

Signed fixed-point binary for fractions

signed fixed-point char example

weight in decimal

1000.0000
0100.0000
0010.0000
0001.0000
0000.1000
0000.0100
0000.0010
0000.0001

-8

4

2

1

0.5
0.25
0.125
0.0625

Table: Weight of each bit in an example fixed-point binary number

» —625=-8+4+2+1+4+0+ .25+ .125=1111.0110,

» 1001.1000p = -8 4+1+ .5 = —6.5

27/44

Limitations of fixed-point

» Can only represent numbers of the form x/2*

» Cannot represent numbers with very large magnitude (great range) or very
small magnitude (great precision)

28/44

Bit shifting

<< N Left shift by N bits

» multiplies by 2V
> 2 << 3=0000_0010, << 3 =0001_0000, =16 = 2 % 23
> 2 << 3=1111_1110, << 3=1111_0000, = —16 = —2 % 23

>> N Right shift by N bits
» divides by 2N
> 16 >> 3 =0001_0000, >> 3 = 0000_0010, =2 = 16/2°
> —16 >>3=1111_0000; >>3=1111_1110, = -2 = —16/23

29/44

Table of contents
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),

dequeue ()
matChainMul.c: Minimum number of multiplies needed for matrix chain

multiplication
30/44

Programming assignment 2: Graphs, trees, queues, hashes

Programming Assignment 2 parts

1. hashTable: implementing a separate-chaining hash table.
edgelist: loading and printing a graph

isTree: needs either DFS (stack) or BFS (queue)

mst: a greedy algorithm

findCycle: needs either DFS (stack) or BFS (queue)

matChainMul: a dynamic programming approach to multiplying matrices
with minimal operations using recursion

AN L i

31/44

Using graphutils.h

» The adjacency list representation
» The edgelist representation

» The query

32/44

Binary search tree

Figure: BST with input sequence 7, 4, 7, 0, 6, 5, 2, 3. Duplicates ignored.

33/44

Binary search tree level order traversal
Figure: Level order, left-to-right traversal would return 7,4, 0, 6, 2, 5, 3.

34/44

Binary search tree traversal orders

Breadth-first
» For example: level-order.
» Needs a queue (first in first out).

» Today in class we will build a BST and a Queue.

Depth-first
» For example: in-order traversal, reverse-order traversal.

» Needs a stack (first in last out).

» But in the example code implementation,where is the stack data structure?

35/44

typedet

Why types are important

» Natural language has nouns, verbs, adjectives, adverbs.
> Type safety.

» Interpretation vs. compilation.

36/44

BSTNode

typedef struct BSTNode BSTNode;
struct BSTNode {
int key;
BSTNode* 1_child; // nodes with smaller key will be in left s
BSTNode* r_child; // nodes with larger key will be in right s
I

37/44

QueueNode, Queue

// queue needed for level order traversal
typedef struct QueueNode QueueNode;
struct QueueNode {
BSTNodex data;
QueueNode* next; // pointer to next node in linked list
b
typedef struct Queue
QueueNodex front; // front (head) of the queue
QueueNode* back; // back (tail) of the queue
} Queue;

38/44

Let’s implement enqueue ()

https://visualgo.net/en/queue
» First, consider if queue is empty.

» Then, consider if queue is not empty. Only need to touch back (tail) of the
queue.

39/44

https://visualgo.net/en/queue

Let’s implement dequeue ()

https://visualgo.net/en/queue
» First, consider if queue will become empty.

» Then, consider if queue will not not empty. Only need to touch front (head) of
the queue.

Subtle point: why are the function signatures (return, parameters) of enqueue ()
and dequeue () the way they are?

40/44

https://visualgo.net/en/queue

Table of contents
Bits and bytes
Why binary
Decimal, binary, octal, and hexadecimal
Representing characters
Bitwise operations

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

Programming assignment 2: Graphs, trees, queues, hashes
Using graphutils.h
bstLevelOrder.c: Level order traversal of a binary search tree
Binary search tree: BSTNode, insert (), delete ()
Linked list implementation of a queue: QueueNode, Queue, enqueue (),

dequeue ()
matChainMul.c: Minimum number of multiplies needed for matrix chain

multiplication
41/44

matChainMul.c: Minimum number of multiplies needed for
matrix chain multiplication

Learning objectives

» Review and master recursion.
> Array subsetting using pointer arithmetic.
» Using pass-by-reference to return computed results.

» A new algorithm that most classmates have not seen before.

Cost of multiplying matrices: the number of multiplies

> Ajxm X Bmxn
» Needs ! x m x n number of multiplies
> (Well-kept secret: fewer multiplications possible, see Strassen’s algorithm)

42/44

matChainMul.c: Minimum number of multiplies needed for

matrix chain multiplication

b
A X BxC=[ap ﬂo,l]lxz X [bfjglle x [co Co’l]lxz

Parenthesization 1: 4+4 = 8 multiplies

bo.oC bo.oc
Ax (BxC)= [go,o aoJ]le % [bo,oco,o bo,oco,l
1,0€0,0 1,060,155

= [(ﬂo,obo,oco,o + ﬂ0,1b1,oCO,o) (ﬂo,obo,0C0,1 + a0,1b1,000,1)} o
X

Parenthesization 2: 242 = 4 multiplies

(AxB)xC= (ao,obo,o + ﬂo,lbl,o) X [coo co]

1x2

= [(ﬂo,obo,o + Elo,1b1,o)Co,0 (ﬂo,obo,o + 610,1171,0)60,1}

1x2

43/44

matChainMul.c: Minimum number of multiplies needed for

matrix chain multiplication

AXBxCxD

First partitioning

» A(BCD); but what is cost of finding
(BCD)? Needs decomposition.

» (AB)(CD)

» (ABC)D; but what is cost of finding
(ABC)? Needs decomposition.

Second partitioning
> A(B(CD))
» A((BC)D)
> (AB)(CD)
» (A(BC))D
» ((AB)C)D

44/44

