Data representation: Integers, Fixed Point, Floating Point

Yipeng Huang
Rutgers University

October 9, 2025

1/28

Table of contents

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers
Normalized: exp field

Normalized: frac field
Normalized: example

2/28

Representing negative and signed integers

Ways to represent negative numbers &”ﬂfﬁ”’/&w‘ /ZLL& e

1. Sign magnitude

r¢dimdml 2o | UV c@fu/é/fﬁv@wﬂ/(,

—

~_

2. 18’ complement

I@M&mﬂw Sound, r2uewpe, G ool

3. 2's complement

bocle

(MA?% Zeng \ Sownd @“’Vy

3/28

Representing negative and signed integers

st ey Lo %W =0

b 0b0000-0090 flivber
ObUity, (er!)7 OBU(IL({(I
Sign magnitude Obloos.coos &
Flip leading bit. =~ - (27(0 ¢ f[27(0
%@ﬁ oL O
0b(000_ 000 | 0h0000. 090 |

z - li
P m

4/28

;(@{ ((o . 0

O\g{oaa;OOO (
) Db vooo_ooe |

——

0 b lOOOVDQ Q- =/

Representing negative and signed integers

-
—
—

L I
1s” complement ¢

Flip all bits

Addition in 1s” complement is sound v

- >

In this encoding there are 2 encodings for 0
-0: Ob1111
+0: 0b0000

vvyyyvyy

5/28

st M@ U Lew Wboﬂfﬁ fos G

Ny b b
0b0000. 000 0h ot (i
Obl000- 2000 Ob e (i
-~ —6(27(0
(276

g e

Ob’l(l,(llb GLQOOO,OOo’

|

+

(0 N

V000 .00 Ojgg
- 4

(O

Representing negative and signed integers

2’s complement

signed char weight in decimal

00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

» what is the most positive value you can represent? 127

» what is the most negative value you can represent? -128

» how to represent -1? 11111111

» how to represent -2? 11111110 6/28

Vel 4 ot = mesl posime

OL[OOO— °c o o OéOOOQ\OOOQ b Vloe,~
OOl
i ‘_\ZCPC@ ZO“ o
= €27,

%WQ oL

Ob((\\\(u\ Déoooo,o@@\

ZV((O ((o

- [ng - SZL@

//Qé(?{ 432 < (x(f < {(QO% DKCQ% (<2 ¢ (&I
@é@ [[_Tol]

-Se, >

9/)(32—6 /X/é* OX(Pf /Xq-(0xl < GK(- ‘”IZJ‘(/KEQ*OKXZ* Oﬁ%

:)
éﬁt 0o | (_Qflog ‘ng (’(((. 002 fOx(

X/iﬁ{(\()&//bz‘% fOb[[@o_H@O

‘”00 01 (1

G2 (¢ ¢ gy
g « @2l
z QCG+7 - 7[

Representing negative and signed integers

2’s complement

signed char weight in decimal

00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

» MSB: 1 for negative
» To make a number negative: flip all bits and add 1.

» Addition in 2’s complement is sound

7/28

Importance of paying attention to limits of encoding

Integer addition Unsigned addition (4-bit word)

Figure: Image credit: CS:APP Figure: Image credit: CS:APP

8/28

Importance of paying attention to limits of encoding

Integer addition

Two's complement addition (4-bit word)

Normal
Negative

overflow

Positive
overflow

Figure: Image credit: CS:APP Figure: Image credit: CS:APP

https://www.theatlantic.com/technology/archive/2014/12/
how—gangnam-style—-broke—-youtube/383389/

9/28

https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/
https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/

Table of contents

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers
Normalized: exp field

Normalized: frac field
Normalized: example

10/28

Unsigned fixed-point binary for fractions

2m
2m—1

4

=

b b XX b2 bl bO ‘b—l b_2 b_3 XX b—n+1 b—n
]

(\®)

1/2
1/4
1/8

1/2m1
1727

Figure: Fractional binary. Image credit CS:APP

11/28

Unsigned fixed-point binary for fractions

unsigned fixed-point char example

weight in decimal

1000.0000
0100.0000
0010.0000
0001.0000
0000.1000
0000.0100
0000.0010
0000.0001

8

4

2

1

0.5
0.25
0.125
0.0625

Table: Weight of each bit in an example fixed-point binary number

» 625 = .5+ .125 = 0000.1010,
» 1001.1000p =9+ .5=9.5

12/28

Signed fixed-point binary for fractions

signed fixed-point char example

weight in decimal

1000.0000
0100.0000
0010.0000
0001.0000
0000.1000
0000.0100
0000.0010
0000.0001

-8

4

2

1

0.5
0.25
0.125
0.0625

Table: Weight of each bit in an example fixed-point binary number

» —625=-8+4+2+1+4+0+ .25+ .125=1111.0110,

» 1001.1000p = -8 4+1+ .5 = —6.5

13/28

Limitations of fixed-point

» Can only represent numbers of the form x/2*

» Cannot represent numbers with very large magnitude (great range) or very
small magnitude (great precision)

14/28

Bit shifting

<< N Left shift by N bits

» multiplies by 2V
> 2 << 3=0000_0010, << 3 =0001_0000, =16 = 2 % 23
> 2 << 3=1111_1110, << 3=1111_0000, = —16 = —2 % 23

>> N Right shift by N bits
» divides by 2N
> 16 >> 3 =0001_0000, >> 3 = 0000_0010, =2 = 16/2°
> —16 >>3=1111_0000; >>3=1111_1110, = -2 = —16/23

15/28

j28.,

020///, [o (]

g/ﬁn.oéf Chor Vumjor - /23

%M@ o, fumber =2 O)/ e
?W'%WC /Q[o per> 1 //é 23/2

éO/// (ol [,
\\XQQQN\<XX>&
OLOO(- A gffqu(
12 (6 - G

@m@fé%l/ﬂwww»4;;/[
()/L(/m/}y/ >7€> 6} OL{

Obo (¢t YL

ohooos o of]
4 ohoaog—bog;:

Table of contents

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers
Normalized: exp field

Normalized: frac field
Normalized: example

16/28

monteCarloPi.c Using floating point and random numbers to
estimate PI

17/28

Table of contents

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers
Normalized: exp field

Normalized: frac field
Normalized: example

18/28

Floating point numbers

Avogadro’s number
+6.02214 x 10% mol

Scientific notation
> sign
» mantissa or significand

> exponent

19/28

Floating point numbers

Before 1985
1. Many floating point systems.
2. Specialized machines such as Cray supercomputers.

3. Some machines with specialized floating point have had to be kept alive to
support legacy software.

After 1985
1. IEEE Standard 754.
2. A floating point standard designed for good numerical properties.

3. Found in almost every computer today, except for tiniest microcontrollers.

Recent
1. Need for both lower precision and higher range floating point numbers.

2. Machine learning / neural networks. Low-precision tensor network
processors.

20/28

Floats and doubles

Single precision

3130 2322 0

S exp frac

Double precision

63 62 5251 32

S exp frac (51:32)

31 0
frac (31:0)

Figure: The two standard formats for floating point data types. Image credit CS:APP

21/28

Floats and doubles

property | half* float double

total bits | 16 32 64
sbit | 1 1 1
exp bits | 5 8 11
frac bits | 10 23 52
C printf() format specifier | None "%f" "%]It"

Table: Properties of floats and doubles

22/28

The IEEE 754 number line

-10 -5 0 +5 +10 +00

¢ Denormalized 4 Normalized = Infinity

Figure: Full picture of number line for floating point values. Image credit CS:APP

-0.8 -0.6 -04 -0.2 0 +0.2 +0.4 +0.6 +0.8 +1

¢ Denormalized a4 Normalized = Infinity

Figure: Zoomed in number line for floating point values. Image credit CS:APP

23/28

Different cases for floating point numbers
Value of the floating point number = (—1)* x M x 2*

» Eis encoded the exp field
» M is encoded the frac field

1. Normalized

[s] =0&=255 | f |

2. Denormalized

[s]olo[ofo]o]o[o]o] f |

3a. Infinity
[s[2[2]2[sa[s]a]]o[ofo]o]o[o[o]ofo]o[o[o]o]o[o[o[o]o[o[o[o[o]o]

3b. NaN
lsfafafafafaafaa] =0 |

Figure: Different cases within a floating point format. Image credit CS:APP

Normalized and denormalized numbers
Two different cases we need to consider for the encoding of E, M

24/28

Table of contents

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview
Floats: Normalized numbers
Normalized: exp field

Normalized: frac field
Normalized: example

25/28

Normalized: exp field

For normalized numbers,
0<exp<2t-1

> exp is a k-bit unsigned integer

Bias
» need a bias to represent negative
exponents

» bias =21 _1

» bias is the k-bit unsigned integer:

011..111

For normalized numbers,
E = exp-bias

In other words, exp = E+bias

property float double
k 8 11
bias 127 1023
smallest E (greatest precision) -126 -1022
largest E (greatest range) 127 1023

Table: Summary of normalized exp field

26/28

Normalized: frac field

M = 1.frac

27/28

Normalized: example

12.375 to single-precision floating point

sign is positive so s=0

binary is 1100.011,

in other words it is 1.100011, x 23

exp = E + bias = 3 + 127 = 130 = 1000_0010,
M =1.100011; = 1.frac

frac = 100011

vVvyvyvVvYvyyvyy

28/28

