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Representing negative and signed integers

Ways to represent negative numbers

1. Sign magnitude
2. 1s’ complement
3. 2’s complement
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Representing negative and signed integers

Sign magnitude
Flip leading bit.
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Representing negative and signed integers

1s’ complement
↭ Flip all bits
↭ Addition in 1s’ complement is sound
↭ In this encoding there are 2 encodings for 0
↭ -0: 0b1111
↭ +0: 0b0000
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Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

↭ what is the most positive value you can represent? 127
↭ what is the most negative value you can represent? -128
↭ how to represent -1? 11111111
↭ how to represent -2? 11111110

powerof two
complement



mostneg
number zero mostpositive

number
Of 000 0000 060000 0000

060111 1111

1280 O
4127

negore one

060000 000
oblitt fill

1 1,0 to

123 520

1 641 1 32 1 16 xfaoxftlxz.tk
060 11 1011



52,0 5210

6

f
f x ÉÉ x

Ob 100 1100
fflipallb.es

061100 1011
add

061100 1100

12310 52

bbbiii 1011

Hbf.it
645716 8911

1 64 442 1

64 1 71



7/28

Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

↭ MSB: 1 for negative
↭ To make a number negative: flip all bits and add 1.
↭ Addition in 2’s complement is sound
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Importance of paying attention to limits of encoding
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Importance of paying attention to limits of encoding
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Unsigned fixed-point binary for fractions
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Figure: Fractional binary. Image credit CS:APP
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Unsigned fixed-point binary for fractions

unsigned fixed-point char example weight in decimal
1000.0000 8
0100.0000 4
0010.0000 2
0001.0000 1
0000.1000 0.5
0000.0100 0.25
0000.0010 0.125
0000.0001 0.0625

Table: Weight of each bit in an example fixed-point binary number

↭ .625 = .5 + .125 = 0000.10102

↭ 1001.10002 = 9 + .5 = 9.5
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Signed fixed-point binary for fractions

signed fixed-point char example weight in decimal
1000.0000 -8
0100.0000 4
0010.0000 2
0001.0000 1
0000.1000 0.5
0000.0100 0.25
0000.0010 0.125
0000.0001 0.0625

Table: Weight of each bit in an example fixed-point binary number

↭ →.625 = →8 + 4 + 2 + 1 + 0 + .25 + .125 = 1111.01102

↭ 1001.10002 = →8 + 1 + .5 = →6.5
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Limitations of fixed-point

↭ Can only represent numbers of the form x/2k

↭ Cannot represent numbers with very large magnitude (great range) or very
small magnitude (great precision)
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Bit shifting

<< N Left shift by N bits
↭ multiplies by 2N

↭ 2 << 3 = 0000_00102 << 3 = 0001_00002 = 16 = 2 ↑ 23

↭ →2 << 3 = 1111_11102 << 3 = 1111_00002 = →16 = →2 ↑ 23

>> N Right shift by N bits
↭ divides by 2N

↭ 16 >> 3 = 0001_00002 >> 3 = 0000_00102 = 2 = 16/23

↭ →16 >> 3 = 1111_00002 >> 3 = 1111_11102 = →2 = →16/23
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monteCarloPi.c Using floating point and random numbers to
estimate PI
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Floating point numbers

Avogadro’s number
+6.02214 ↓ 1023 mol→1

Scientific notation
↭ sign
↭ mantissa or significand
↭ exponent
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Floating point numbers
Before 1985

1. Many floating point systems.
2. Specialized machines such as Cray supercomputers.
3. Some machines with specialized floating point have had to be kept alive to

support legacy software.

After 1985
1. IEEE Standard 754.
2. A floating point standard designed for good numerical properties.
3. Found in almost every computer today, except for tiniest microcontrollers.

Recent
1. Need for both lower precision and higher range floating point numbers.
2. Machine learning / neural networks. Low-precision tensor network

processors.



21/28

Floats and doubles
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Figure: The two standard formats for floating point data types. Image credit CS:APP
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Floats and doubles

property half* float double

total bits 16 32 64
s bit 1 1 1

exp bits 5 8 11
frac bits 10 23 52

C printf() format specifier None "%f" "%lf"

Table: Properties of floats and doubles
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The IEEE 754 number line
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Figure: Zoomed in number line for floating point values. Image credit CS:APP
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Different cases for floating point numbers
Value of the floating point number = (→1)s ↓ M ↓ 2E

↭ E is encoded the exp field
↭ M is encoded the frac field
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Figure: Different cases within a floating point format. Image credit CS:APP

Normalized and denormalized numbers
Two different cases we need to consider for the encoding of E, M
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Normalized: exp field

For normalized numbers,
0 < exp < 2k → 1
↭ exp is a k-bit unsigned integer

Bias
↭ need a bias to represent negative

exponents
↭ bias = 2k→1 → 1
↭ bias is the k-bit unsigned integer:

011..111

For normalized numbers,
E = exp-bias
In other words, exp = E+bias

property float double

k 8 11
bias 127 1023

smallest E (greatest precision) -126 -1022
largest E (greatest range) 127 1023

Table: Summary of normalized exp field
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Normalized: frac field

M = 1.frac
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Normalized: example

↭ 12.375 to single-precision floating point
↭ sign is positive so s=0
↭ binary is 1100.0112

↭ in other words it is 1.1000112 ↓ 23

↭ exp = E + bias = 3 + 127 = 130 = 1000_00102

↭ M = 1.1000112 = 1.frac
↭ frac = 100011


