
1/28

Data representation: Integers, Fixed Point, Floating Point

Yipeng Huang

Rutgers University

October 9, 2025

I



2/28

Table of contents

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

monteCarloPi.c Using floating point and random numbers to estimate PI

Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example



3/28

Representing negative and signed integers

Ways to represent negative numbers

1. Sign magnitude
2. 1s’ complement
3. 2’s complement

Compassion Addicon

t.ir i
l

me



4/28

Representing negative and signed integers

Sign magnitude
Flip leading bit.

mostney Zero loggatpes
number Ramber0600000000
oblitt till

011000.000
Oboll at it

127,0 12710

negone one
Ob000 0001 060000000

1,0 110



110 1,0 0

Oblooo 000 l

4 060000 0001

2



5/28

Representing negative and signed integers

1s’ complement
↭ Flip all bits
↭ Addition in 1s’ complement is sound
↭ In this encoding there are 2 encodings for 0
↭ -0: 0b1111
↭ +0: 0b0000

1111.1111
f



mostnegative Zero mostpositive
numbernumber 060000 0000 060111 1111

061000 0000 011111 1111
2210

12710

negone one

Ob 111 1110
060000 000

110 4110

To 1 210

IE ity

o00000Ct
co



6/28

Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

↭ what is the most positive value you can represent? 127
↭ what is the most negative value you can represent? -128
↭ how to represent -1? 11111111
↭ how to represent -2? 11111110

powerof two
complement



mostneg
number zero mostpositive

number
Of 000 0000 060000 0000

060111 1111

1280 O
4127

negore one

060000 000
oblitt fill

1 1,0 to

123 520

1 641 1 32 1 16 xfaoxftlxz.tk
060 11 1011



52,0 5210

6

f
f x ÉÉ x

Ob 100 1100
fflipallb.es

061100 1011
add

061100 1100

12310 52

bbbiii 1011

Hbf.it
645716 8911

1 64 442 1

64 1 71



7/28

Representing negative and signed integers
2’s complement

signed char weight in decimal
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16
00100000 32
01000000 64
10000000 -128

Table: Weight of each bit in a signed char type

↭ MSB: 1 for negative
↭ To make a number negative: flip all bits and add 1.
↭ Addition in 2’s complement is sound



8/28

Importance of paying attention to limits of encoding

0 2 4 6 8 10 
12 14 

0 
2 

4 
6 

8 
10 

12 
14 

0 
4 
8 

12 
16 
20 
24 
28 
32 

Integer addition 

Figure: Image credit: CS:APP

0 2 4 6 8 10 12 14 
0 

2 
4 

6 
8 

10 
12 

14 

0 
2 
4 
6 
8 

10 
12 
14 
16 

Unsigned addition (4-bit word) 

Normal 

Overflow 

Figure: Image credit: CS:APP



9/28

Importance of paying attention to limits of encoding

0 2 4 6 8 10 
12 14 

0 
2 

4 
6 

8 
10 

12 
14 

0 
4 
8 

12 
16 
20 
24 
28 
32 

Integer addition 

Figure: Image credit: CS:APP

-8 -6 -4 -2 0 2 4 6 
-8 

-6 
-4 

-2 
0 

2 
4 

6 

-8 
-6 
-4 
-2 
0 
2 
4 
6 
8 

Two's complement addition (4-bit word) 

Normal 

Positive 
overflow 

Negative 
overflow 

Figure: Image credit: CS:APP

https://www.theatlantic.com/technology/archive/2014/12/
how-gangnam-style-broke-youtube/383389/

https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/
https://www.theatlantic.com/technology/archive/2014/12/how-gangnam-style-broke-youtube/383389/


signed int 32 bie

mostpos number
obo

216 210 61 2 26 1024.26

64 1000

2321.21344211 234022 1.4100021
231 1 2

0

111.12 1 FEB 1

GB 109 B 2Billion

GiB 213 B

GigiBya



10/28

Table of contents

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

monteCarloPi.c Using floating point and random numbers to estimate PI

Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example



11/28

Unsigned fixed-point binary for fractions


�
�
	

bm	

 bm–1	

 b2	

 b1	

 b0	

 b–1	

 b–2	

 b–3	

 b–n+1	


�
�
	

 .	


1	


2	


4	



2m–1	



2m	




�
�
	



�
�
	



1/2	


1/4	


1/8	



1/2n–1	



b–n	



1/2n	



Figure: Fractional binary. Image credit CS:APP



12/28

Unsigned fixed-point binary for fractions

unsigned fixed-point char example weight in decimal
1000.0000 8
0100.0000 4
0010.0000 2
0001.0000 1
0000.1000 0.5
0000.0100 0.25
0000.0010 0.125
0000.0001 0.0625

Table: Weight of each bit in an example fixed-point binary number

↭ .625 = .5 + .125 = 0000.10102

↭ 1001.10002 = 9 + .5 = 9.5



13/28

Signed fixed-point binary for fractions

signed fixed-point char example weight in decimal
1000.0000 -8
0100.0000 4
0010.0000 2
0001.0000 1
0000.1000 0.5
0000.0100 0.25
0000.0010 0.125
0000.0001 0.0625

Table: Weight of each bit in an example fixed-point binary number

↭ →.625 = →8 + 4 + 2 + 1 + 0 + .25 + .125 = 1111.01102

↭ 1001.10002 = →8 + 1 + .5 = →6.5



14/28

Limitations of fixed-point

↭ Can only represent numbers of the form x/2k

↭ Cannot represent numbers with very large magnitude (great range) or very
small magnitude (great precision)



15/28

Bit shifting

<< N Left shift by N bits
↭ multiplies by 2N

↭ 2 << 3 = 0000_00102 << 3 = 0001_00002 = 16 = 2 ↑ 23

↭ →2 << 3 = 1111_11102 << 3 = 1111_00002 = →16 = →2 ↑ 23

>> N Right shift by N bits
↭ divides by 2N

↭ 16 >> 3 = 0001_00002 >> 3 = 0000_00102 = 2 = 16/23

↭ →16 >> 3 = 1111_00002 >> 3 = 1111_11102 = →2 = →16/23



12310
060111 1011

signed char number 123

pontf d number 0 1 123

printf d numbers 11 61 123 2

obo ii 1011

Milk
0500 149 321 16 8 9 11

61

printff d numbers 6 1

numbers 6 obl

obolat text

060000 00010

4060000.001g



16/28

Table of contents

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

monteCarloPi.c Using floating point and random numbers to estimate PI

Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example



17/28

monteCarloPi.c Using floating point and random numbers to
estimate PI



18/28

Table of contents

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

monteCarloPi.c Using floating point and random numbers to estimate PI

Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example



19/28

Floating point numbers

Avogadro’s number
+6.02214 ↓ 1023 mol→1

Scientific notation
↭ sign
↭ mantissa or significand
↭ exponent



20/28

Floating point numbers
Before 1985

1. Many floating point systems.
2. Specialized machines such as Cray supercomputers.
3. Some machines with specialized floating point have had to be kept alive to

support legacy software.

After 1985
1. IEEE Standard 754.
2. A floating point standard designed for good numerical properties.
3. Found in almost every computer today, except for tiniest microcontrollers.

Recent
1. Need for both lower precision and higher range floating point numbers.
2. Machine learning / neural networks. Low-precision tensor network

processors.



21/28

Floats and doubles

31	

30	

 23	

22	

 0	



s exp frac 

63	

62	

 52	

51	

 	



s exp frac (51:32)	



Single precision	



Double precision	



frac (31:0)	


31	

 0	



32	



Figure: The two standard formats for floating point data types. Image credit CS:APP



22/28

Floats and doubles

property half* float double

total bits 16 32 64
s bit 1 1 1

exp bits 5 8 11
frac bits 10 23 52

C printf() format specifier None "%f" "%lf"

Table: Properties of floats and doubles



23/28

The IEEE 754 number line

–∞ –10 –5 0 +5 +10 +∞ 

Denormalized Normalized Infinity 

Figure: Full picture of number line for floating point values. Image credit CS:APP

–1 –0.8 –0.6 –0.4 –0.2 0 +0.2 +0.4 +0.6 +0.8 +1 
Denormalized Normalized Infinity 

+0 –0 

Figure: Zoomed in number line for floating point values. Image credit CS:APP



24/28

Different cases for floating point numbers
Value of the floating point number = (→1)s ↓ M ↓ 2E

↭ E is encoded the exp field
↭ M is encoded the frac field

s	

 ≠ 0 & ≠ 255 f	



1. Normalized 

s	

 f	



s	



s	

 ≠ 0	



2. Denormalized 

3a. Infinity 

3b. NaN 

1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 

Figure: Different cases within a floating point format. Image credit CS:APP

Normalized and denormalized numbers
Two different cases we need to consider for the encoding of E, M



25/28

Table of contents

Integers and basic arithmetic
Representing negative and signed integers

Fractions and fixed point representation

monteCarloPi.c Using floating point and random numbers to estimate PI

Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example



26/28

Normalized: exp field

For normalized numbers,
0 < exp < 2k → 1
↭ exp is a k-bit unsigned integer

Bias
↭ need a bias to represent negative

exponents
↭ bias = 2k→1 → 1
↭ bias is the k-bit unsigned integer:

011..111

For normalized numbers,
E = exp-bias
In other words, exp = E+bias

property float double

k 8 11
bias 127 1023

smallest E (greatest precision) -126 -1022
largest E (greatest range) 127 1023

Table: Summary of normalized exp field



27/28

Normalized: frac field

M = 1.frac



28/28

Normalized: example

↭ 12.375 to single-precision floating point
↭ sign is positive so s=0
↭ binary is 1100.0112

↭ in other words it is 1.1000112 ↓ 23

↭ exp = E + bias = 3 + 127 = 130 = 1000_00102

↭ M = 1.1000112 = 1.frac
↭ frac = 100011


