
1/20

Data representation: Fixed Point, Floating Point
Normalized Numbers

Yipeng Huang

Rutgers University

October 14, 2025



2/20

Table of contents

Fractions and fixed point representation

monteCarloPi.c Using floating point and random numbers to estimate PI

Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example



3/20

Unsigned fixed-point binary for fractions


�
�
	

bm	

 bm–1	

 b2	

 b1	

 b0	

 b–1	

 b–2	

 b–3	

 b–n+1	


�
�
	

 .	


1	


2	


4	



2m–1	



2m	




�
�
	



�
�
	



1/2	


1/4	


1/8	



1/2n–1	



b–n	



1/2n	



Figure: Fractional binary. Image credit CS:APP



4/20

Unsigned fixed-point binary for fractions

unsigned fixed-point char example weight in decimal
1000.0000 8
0100.0000 4
0010.0000 2
0001.0000 1
0000.1000 0.5
0000.0100 0.25
0000.0010 0.125
0000.0001 0.0625

Table: Weight of each bit in an example fixed-point binary number

↭ .625 = .5 + .125 = 0000.10102

↭ 1001.10002 = 9 + .5 = 9.5



5/20

Signed fixed-point binary for fractions

signed fixed-point char example weight in decimal
1000.0000 -8
0100.0000 4
0010.0000 2
0001.0000 1
0000.1000 0.5
0000.0100 0.25
0000.0010 0.125
0000.0001 0.0625

Table: Weight of each bit in an example fixed-point binary number

↭ →.625 = →8 + 4 + 2 + 1 + 0 + .25 + .125 = 1111.01102

↭ 1001.10002 = →8 + 1 + .5 = →6.5



TO 3.14159

113.14111cg8.00000 3.14159

Inane
0 it

0.12f



6/20

Limitations of fixed-point

↭ Can only represent numbers of the form x/2k

↭ Cannot represent numbers with very large magnitude (great range) or very
small magnitude (great precision)

on
fire



7/20

Bit shifting

<< N Left shift by N bits
↭ multiplies by 2N

↭ 2 << 3 = 0000_00102 << 3 = 0001_00002 = 16 = 2 ↑ 23

↭ →2 << 3 = 1111_11102 << 3 = 1111_00002 = →16 = →2 ↑ 23

>> N Right shift by N bits
↭ divides by 2N

↭ 16 >> 3 = 0001_00002 >> 3 = 0000_00102 = 2 = 16/23

↭ →16 >> 3 = 1111_00002 >> 3 = 1111_11102 = →2 = →16/23



8/20

Table of contents

Fractions and fixed point representation

monteCarloPi.c Using floating point and random numbers to estimate PI

Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example



9/20

monteCarloPi.c Using floating point and random numbers to
estimate PI



10/20

Table of contents

Fractions and fixed point representation

monteCarloPi.c Using floating point and random numbers to estimate PI

Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example



11/20

Floating point numbers

Avogadro’s number
+6.02214 ↓ 1023 mol→1

Scientific notation
↭ sign
↭ mantissa or significand
↭ exponent

60 2214 10

0.602214 1024



12/20

Floating point numbers
Before 1985

1. Many floating point systems.
2. Specialized machines such as Cray supercomputers.
3. Some machines with specialized floating point have had to be kept alive to

support legacy software.

After 1985
1. IEEE Standard 754.
2. A floating point standard designed for good numerical properties.
3. Found in almost every computer today, except for tiniest microcontrollers.

Recent
1. Need for both lower precision and higher range floating point numbers.
2. Machine learning / neural networks. Low-precision tensor network

processors.



13/20

Floats and doubles

31	

30	

 23	

22	

 0	



s exp frac 

63	

62	

 52	

51	

 	



s exp frac (51:32)	



Single precision	



Double precision	



frac (31:0)	


31	

 0	



32	



Figure: The two standard formats for floating point data types. Image credit CS:APP



14/20

Floats and doubles

property half* float double

total bits 16 32 64
s bit 1 1 1

exp bits 5 8 11
frac bits 10 23 52

C printf() format specifier None "%f" "%lf"

Table: Properties of floats and doubles



15/20

The IEEE 754 number line

–∞ –10 –5 0 +5 +10 +∞ 

Denormalized Normalized Infinity 

Figure: Full picture of number line for floating point values. Image credit CS:APP

–1 –0.8 –0.6 –0.4 –0.2 0 +0.2 +0.4 +0.6 +0.8 +1 
Denormalized Normalized Infinity 

+0 –0 

Figure: Zoomed in number line for floating point values. Image credit CS:APP



16/20

Different cases for floating point numbers
Value of the floating point number = (→1)s ↓ M ↓ 2E

↭ E is encoded the exp field
↭ M is encoded the frac field

s	

 ≠ 0 & ≠ 255 f	



1. Normalized 

s	

 f	



s	



s	

 ≠ 0	



2. Denormalized 

3a. Infinity 

3b. NaN 

1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 

Figure: Different cases within a floating point format. Image credit CS:APP

Normalized and denormalized numbers
Two different cases we need to consider for the encoding of E, M



17/20

Table of contents

Fractions and fixed point representation

monteCarloPi.c Using floating point and random numbers to estimate PI

Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example



18/20

Normalized: exp field

For normalized numbers,
0 < exp < 2k → 1
↭ exp is a k-bit unsigned integer

Bias
↭ need a bias to represent negative

exponents
↭ bias = 2k→1 → 1
↭ bias is the k-bit unsigned integer:

011..111

For normalized numbers,
E = exp-bias
In other words, exp = E+bias

property float double

k 8 11
bias 127 1023

smallest E (greatest precision) -126 -1022
largest E (greatest range) 127 1023

Table: Summary of normalized exp field



19/20

Normalized: frac field

M = 1.frac



20/20

Normalized: example

↭ 12.375 to single-precision floating point
↭ sign is positive so s=0
↭ binary is 1100.0112

↭ in other words it is 1.1000112 ↓ 23

↭ exp = E + bias = 3 + 127 = 130 = 1000_00102

↭ M = 1.1000112 = 1.frac
↭ frac = 100011


