Data representation: Fixed Point, Floating Point
Normalized Numbers

Yipeng Huang
Rutgers University

October 14, 2025

1/20

Table of contents

Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example

2/20

Unsigned fixed-point binary for fractions

2m
2m—1

4

=

b b XX b2 bl bO ‘b—l b_2 b_3 XX b—n+1 b—n
]

(\®)

1/2
1/4
1/8

1/2m1
1727

Figure: Fractional binary. Image credit CS:APP

3/20

Unsigned fixed-point binary for fractions

unsigned fixed-point char example

weight in decimal

1000.0000
0100.0000
0010.0000
0001.0000
0000.1000
0000.0100
0000.0010
0000.0001

8

4

2

1

0.5
0.25
0.125
0.0625

Table: Weight of each bit in an example fixed-point binary number

» 625 = .5+ .125 = 0000.1010,
» 1001.1000p =9+ .5=9.5

4/20

Signed fixed-point binary for fractions

signed fixed-point char example

weight in decimal

1000.0000
0100.0000
0010.0000
0001.0000
0000.1000
0000.0100
0000.0010
0000.0001

8

4 —

2 -

1 ol
0.5
025
0.125

0.0625

Table: Weight of each bit in an example fixed-point binary number

» —625=-8+4+2+1+4+0+ .25+ .125=1111.0110,

» 1001.1000p = -8 4+1+ .5 = —-6.5

5/20

-G = -3(¢r54a -

_fo00v0r
Ny
—[-7.'¢ (y 9 -

Limitations 0@
» Can only represent numbers of the fo@

Cannot represent numbers with very large magnitude (great range) or very
small magnitude (great precision)
_—

6/20

Bit shifting

<< N Left shift by N bits

» multiplies by 2V
> 2 << 3=0000_0010, << 3 =0001_0000, =16 = 2 % 23
> 2 << 3=1111_1110, << 3=1111_0000, = —16 = —2 % 23

>> N Right shift by N bits
» divides by 2N
> 16 >> 3 =0001_0000, >> 3 = 0000_0010, =2 = 16/2°
> —16 >>3=1111_0000; >>3=1111_1110, = -2 = —16/23

7/20

Table of contents

Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example

8/20

monteCarloPi.c Using floating point and random numbers to
estimate PI

9/20

Table of contents

Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example

10/20

Floating point numbers :

i
éc)- 2219 =< |0

2
, 0.6022 1« ;<(O4
Avogadro’s gmber

+6.02214 x 10% mol~1
Scientific notation

> sign

» mantissa or significand

> exponent

11/20

Floating point numbers

Before 1985
1. Many floating point systems.
2. Specialized machines such as Cray supercomputers.

3. Some machines with specialized floating point have had to be kept alive to
support legacy software.

After 1985
1. IEEE Standard 754.
2. A floating point standard designed for good numerical properties.

3. Found in almost every computer today, except for tiniest microcontrollers.

Recent
1. Need for both lower precision and higher range floating point numbers.

2. Machine learning / neural networks. Low-precision tensor network
processors.

12/20

Floats and doubles

Single precision

3130 2322 0

S exp frac

Double precision

63 62 5251 32

S exp frac (51:32)

31 0
frac (31:0)

Figure: The two standard formats for floating point data types. Image credit CS:APP

13/20

Floats and doubles

property | half* float double

total bits | 16 32 64
sbit | 1 1 1
exp bits | 5 8 11
frac bits | 10 23 52
C printf() format specifier | None "%f" "%]It"

Table: Properties of floats and doubles

14/20

The IEEE 754 number line

-10 -5 0 +5 +10 +00

¢ Denormalized 4 Normalized = Infinity

Figure: Full picture of number line for floating point values. Image credit CS:APP

-0.8 -0.6 -04 -0.2 0 +0.2 +0.4 +0.6 +0.8 +1

¢ Denormalized a4 Normalized = Infinity

Figure: Zoomed in number line for floating point values. Image credit CS:APP

15/20

Different cases for floating point numbers
Value of the floating point number = (—1)* x M x 2*

» Eis encoded the exp field
» M is encoded the frac field

1. Normalized

[s] =0&=255 | f |

2. Denormalized

[s]olo[ofo]o]o[o]o] f |

3a. Infinity
[s[2[2]2[sa[s]a]]o[ofo]o]o[o[o]ofo]o[o[o]o]o[o[o[o]o[o[o[o[o]o]

3b. NaN
lsfafafafafaafaa] =0 |

Figure: Different cases within a floating point format. Image credit CS:APP

Normalized and denormalized numbers
Two different cases we need to consider for the encoding of E, M

16/20

Table of contents

Fractions and fixed point representation
monteCarloPi.c Using floating point and random numbers to estimate PI
Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example

17/20

Normalized: exp field

For normalized numbers,
0<exp<2t-1

> exp is a k-bit unsigned integer

Bias
» need a bias to represent negative
exponents

» bias =21 _1

» bias is the k-bit unsigned integer:

011..111

For normalized numbers,
E = exp-bias

In other words, exp = E+bias

property float double
k 8 11
bias 127 1023
smallest E (greatest precision) -126 -1022
largest E (greatest range) 127 1023

Table: Summary of normalized exp field

18/20

Normalized: frac field

M = 1.frac

19/20

Normalized: example

12.375 to single-precision floating point

sign is positive so s=0

binary is 1100.011,

in other words it is 1.100011, x 23

exp = E + bias = 3 + 127 = 130 = 1000_0010,
M =1.100011; = 1.frac

frac = 100011

vVvyvyvVvYvyyvyy

20/20

