Data representation: Floating Point Denormalized Numbers
and Mastery

Yipeng Huang
Rutgers University

October 21, 2025

1/31

Table of contents
Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example
FloatsyDenormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples
Floats: Special cases
Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2¢=1 — 1?
Floats: Properties
Floating point multiplication

Floats: Summary
2/31

Floating point numbers

Avogadro’s number
+6.02214 x 10% mol

Scientific notation
> sign
» mantissa or significand

> exponent

3/31

Floating point numbers

Before 1985
1. Many floating point systems.
2. Specialized machines such as Cray supercomputers.

3. Some machines with specialized floating point have had to be kept alive to
support legacy software.

After 1985
1. IEEE Standard 754.
2. A floating point standard designed for good numerical properties.

3. Found in almost every computer today, except for tiniest microcontrollers.

Recent
1. Need for both lower precision and higher range floating point numbers.

2. Machine learning / neural networks. Low-precision tensor network
processors.

4/31

Floats and doubles

Single precision

3130 2322 0

S exp frac

Double precision

63 62 5251 32

S exp frac (51:32)

31 0
frac (31:0)

Figure: The two standard formats for floating point data types. Image credit CS:APP

5/31

Floats and doubles

property | half* float double

total bits | 16 32 64
sbit | 1 1 1
exp bits | 5 8 11
frac bits | 10 23 52
C printf() format specifier | None "%f" "%]It"

Table: Properties of floats and doubles

6/31

The IEEE 754 number line

o0 ~10 -5 0 +5 +10 oo

¢ Denormalized 4 Normalized = Infinity

Figure: Full picture of number line for floating point values. Image credit CS:APP

—1 -0.8 -0.6 -0.4 -0.2 0 +0.2 +0.4 +0.6 +0.8 +1

¢ Denormalized a4 Normalized = Infinity

Figure: Zoomed in number line for floating point values. Image credit CS:APP

7/31

Different cases for floating point numbers
Value of the floating point number = (—1)* x M x 2*

» Eis encoded the exp field
» M is encoded the frac field

1. Normalized

[s] =0&=255 | f |

2. Denormalized

[s]olo[ofo]o]o[o]o] f |

3a. Infinity
[s[2[2]2[sa[s]a]]o[ofo]o]o[o[o]ofo]o[o[o]o]o[o[o[o]o[o[o[o[o]o]

3b. NaN
lsfafafafafaafaa] =0 |

Figure: Different cases within a floating point format. Image credit CS:APP

Normalized and denormalized numbers
Two different cases we need to consider for the encoding of E, M

8/31

Table of contents
Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example
Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples
Floats: Special cases
Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2¢=1 — 1?
Floats: Properties
Floating point multiplication

Floats: Summary
9/31

Normalized: exp field

For normalized numbers,
0<exp<2t-1

> exp is a k-bit unsigned integer

Bias
» need a bias to represent negative
exponents

» bias =21 _1

» bias is the k-bit unsigned integer:

011..111

For normalized numbers,
E = exp-bias

In other words, exp = E+bias

property float double
k 8 11
bias 127 1023
smallest E (greatest precision) -126 -1022
largest E (greatest range) 127 1023

Table: Summary of normalized exp field

10/31

Normalized: frac field

M = 1.frac

11/31

Normalized: example

12.375 to single-precision floating point

sign is positive so s=0

binary is 1100.011,

in other words it is 1.100011, x 23

exp = E + bias = 3 + 127 = 130 = 1000_0010,
M =1.100011; = 1.frac

frac = 100011

vVvyvyvVvYvyyvyy

12/31

positive fmﬁm%)

jﬁ@%‘(AOIM}% Nown ber

‘_@PS"’(W\ 0. O((| _

ona
0O-0t1V'. 000

Sl (et VH)ﬁMb‘Qr<7(Nuwbey

0_0001_000

2¢x0 = () (mtosn) - 2

4

- (w).“,oooz)f 7

(@W—bw)

Table of contents
Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example
Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples
Floats: Special cases
Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2¢=1 — 1?
Floats: Properties
Floating point multiplication

Floats: Summary
13/31

The IEEE 754 number line

-10 -5 0 +5 +10 +00

¢ Denormalized 4 Normalized = Infinity

Figure: Full picture of number line for floating point values. Image credit CS:APP

-0.8 -0.6 -04 -0.2 0 +0.2 +0.4 +0.6 +0.8 +1

¢ Denormalized a4 Normalized = Infinity

Figure: Zoomed in number line for floating point values. Image credit CS:APP

14/31

Denormalized: exp field

For denormalized numbers, exp = 0

Bias property | float double
» need a bias to represent negative k|8 11
exponents bias | 127 1023
> bias =21 -1 E|-126 -1022
» bias is the k-bit unsigned integer:
011.111 Table: Summary of denormalized exp field

For denormalized numbers,
E = 1-bias

15/31

Denormalized: frac field

M = 0.frac

value represented leading with 0

16/31

Denormalized: examples

17/31

j&«(}f%’(éenovv\wﬁaue/f iumh ey
Withont speand treatuan <nal how i works

= (“JJ'UH(Z) 2
- N
({"(L“(a‘-@f\ \?/f
8 0 Y
3 (/))
é\zé‘g —Ke,~—[£ Z -1y (L o/
(o Z zfo = Z/Q ZC’D

O_0000. [
g E
=0 (0.t1,) 7
T N (- bt
-] 6
o] —
=
T T
A9 13 P
oL -7) L
64 Stz x 7;:&??’—— 77 Jd1Z

SM%‘(ngw\(M}% Nuwhe,
L)T-{llow(speprl Tealuond(< ol how i wovky)

0_0000-00(

= (1)~ (oo) ZOL7

< (1+5) - 2|

B R
?{T i i_‘(_?(i J¢ | -

|- bias
= (-] (0.09[). 7
) (-6
= (o) . L
(g) dlz f [| \ | (%
Qo £ 23 4 5 < 3
. L O'O&Zm“ﬁés%ﬁ Sﬁ&%é@

Table of contents
Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example
Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples
Floats: Special cases
Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2¢=1 — 1?
Floats: Properties
Floating point multiplication

Floats: Summary
18/31

Floats: Special cases

number class when it arises exp field frac field
+0 /-0 0 0
+infinity / -infinity overflow or division by 0 2k -1 0
NaN not-a-number | illegal ops. such as v/—1, inf-inf, inf*0 | 2F —1 non-0

Table: Summary of special cases

19/31

L\ﬂ\j hWave both +@.0 md ~0.9

/|_0000_0D0o0Q

, -7
= (-1} - [0.009) - 2
S
(
\—O’O_ ==0.0 J—
= - 0.0
| T |
S (R

Table of contents
Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example
Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples
Floats: Special cases
Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2¢=1 — 1?
Floats: Properties
Floating point multiplication

Floats: Summary
20/31

Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.

Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

21/31

Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.

Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

22/31

Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.

Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

Consider hypothetical 8-bit floating point format (from the textbook)
1-bit sign, k = 4-bit exp, 3-bit frac.

What is the decimal value of What is the decimal value of
Ob1l 0110 1117 Ob1 0111 _000?

23/31

Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.

Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

Consider hypothetical 8-bit floating point format (from the textbook)
1-bit sign, k = 4-bit exp, 3-bit frac.

What is the decimal value of What is the decimal value of
Ob1l 0110 1117 Ob1 0111 _000?
—1.875 x 21 —2.000 x 21

24/31

Deep understanding 2: Why have denormalized numbers?

Why not just continue normalized number scheme down to smallest
numbers around zero?

Answer: makes sure that smallest increments available are maintained around
Zero.

Suppose denormalized numbers NOT used.

What is the decimal What is the decimal What is the decimal
value of O0b0_0000_001? value of ObO_0000 1117 value of O0b0_0001_0007?
1.125 x 277 1.875 x 277 2.000 x 277

25/31

Deep understanding 2: Why have denormalized numbers?

Why not just continue normalized number scheme down to smallest
numbers around zero?

Answer: makes sure that smallest increments available are maintained around
Zero.

Suppose denormalized numbers ARE used.

What is the decimal What is the decimal What is the decimal
value of Ob0_0000_001? value of ObO_0000 1117 value of O0b0_0001_0007?
0.125 x 27 0.875 x 27 1.000 x 2~

26/31

Table of contents
Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example
Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples
Floats: Special cases
Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2¢=1 — 1?
Floats: Properties
Floating point multiplication

Floats: Summary
27/31

How to multiply scientific notation?

Recall: log(x x y) = log(x) + log(y)

28/31

Floating point multiplication

Carnegie Mellon

FP Multiplication

m (1)1 M1 288 x (1) M2 2F2
m Exact Result: (-1)° M 2F

= Sign s: s1/s2

= Significand M: M1 x M2

" Exponent E: E1l+E2
m Fixing

= |[f M 2 2, shift M right, increment E
® |f E out of range, overflow
®= Round M to fit £rac precision

m Implementation
® Biggest chore is multiplying significands

Brvant and O’Hallaron, Computer Svstems: A Programmer’s Perspective, Third Edition

27

29/31

Table of contents
Floats: Overview

Floats: Normalized numbers
Normalized: exp field
Normalized: frac field
Normalized: example
Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples
Floats: Special cases
Floats: Understanding its design
Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2¢=1 — 1?
Floats: Properties
Floating point multiplication

Floats: Summary
30/31

Floats: Summary

normalized denormalized
value of number | (—1)° x M x 2F (=1)S x M x 2F
E | E = exp-bias E =-bias + 1
bias | 271 -1 211
exp | 0 <exp < (28—1) exp =0
M | M = 1.frac M = 0.frac
M has implied leading 1 =~ M has leading 0
greater range greater precision
large magnitude numbers small magnitude numbers
denser near origin evenly spaced

Table: Summary of normalized and denormalized numbers

31/31

&ﬂﬂea’wj to Octnel nuwmber (anies <,
30. bt Flon ad 64-pt Dounble -

