
1/31

Data representation: Floating Point Denormalized Numbers
and Mastery

Yipeng Huang

Rutgers University

October 21, 2025

2/31

Table of contents
Floats: Overview
Floats: Normalized numbers

Normalized: exp field
Normalized: frac field
Normalized: example

Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples

Floats: Special cases
Floats: Understanding its design

Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2k→1 → 1?

Floats: Properties
Floating point multiplication

Floats: Summary

3/31

Floating point numbers

Avogadro’s number
+6.02214 ↑ 1023 mol→1

Scientific notation
↭ sign
↭ mantissa or significand
↭ exponent

4/31

Floating point numbers
Before 1985

1. Many floating point systems.
2. Specialized machines such as Cray supercomputers.
3. Some machines with specialized floating point have had to be kept alive to

support legacy software.

After 1985
1. IEEE Standard 754.
2. A floating point standard designed for good numerical properties.
3. Found in almost every computer today, except for tiniest microcontrollers.

Recent
1. Need for both lower precision and higher range floating point numbers.
2. Machine learning / neural networks. Low-precision tensor network

processors.

5/31

Floats and doubles

31	

30	

 23	

22	

 0	

s exp frac

63	

62	

 52	

51	

 	

s exp frac (51:32)	

Single precision	

Double precision	

frac (31:0)	

31	

 0	

32	

Figure: The two standard formats for floating point data types. Image credit CS:APP

6/31

Floats and doubles

property half* float double

total bits 16 32 64
s bit 1 1 1

exp bits 5 8 11
frac bits 10 23 52

C printf() format specifier None "%f" "%lf"

Table: Properties of floats and doubles

7/31

The IEEE 754 number line

–∞ –10 –5 0 +5 +10 +∞

Denormalized Normalized Infinity

Figure: Full picture of number line for floating point values. Image credit CS:APP

–1 –0.8 –0.6 –0.4 –0.2 0 +0.2 +0.4 +0.6 +0.8 +1
Denormalized Normalized Infinity

+0 –0

Figure: Zoomed in number line for floating point values. Image credit CS:APP

8/31

Different cases for floating point numbers
Value of the floating point number = (→1)s ↑ M ↑ 2E

↭ E is encoded the exp field
↭ M is encoded the frac field

s	

 ≠ 0 & ≠ 255 f	

1. Normalized

s	

 f	

s	

s	

 ≠ 0	

2. Denormalized

3a. Infinity

3b. NaN

1 0 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

Figure: Different cases within a floating point format. Image credit CS:APP

Normalized and denormalized numbers
Two different cases we need to consider for the encoding of E, M

9/31

Table of contents
Floats: Overview
Floats: Normalized numbers

Normalized: exp field
Normalized: frac field
Normalized: example

Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples

Floats: Special cases
Floats: Understanding its design

Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2k→1 → 1?

Floats: Properties
Floating point multiplication

Floats: Summary

10/31

Normalized: exp field

For normalized numbers,
0 < exp < 2k → 1
↭ exp is a k-bit unsigned integer

Bias
↭ need a bias to represent negative

exponents
↭ bias = 2k→1 → 1
↭ bias is the k-bit unsigned integer:

011..111

For normalized numbers,
E = exp-bias
In other words, exp = E+bias

property float double

k 8 11
bias 127 1023

smallest E (greatest precision) -126 -1022
largest E (greatest range) 127 1023

Table: Summary of normalized exp field

11/31

Normalized: frac field

M = 1.frac

12/31

Normalized: example

↭ 12.375 to single-precision floating point
↭ sign is positive so s=0
↭ binary is 1100.0112

↭ in other words it is 1.1000112 ↑ 23

↭ exp = E + bias = 3 + 127 = 130 = 1000_00102

↭ M = 1.1000112 = 1.frac
↭ frac = 100011

positive infinity

largest normalized number

epsilon 0 0111 001

1 1.00121 2

f ii epsilon
one
0 0111 000

Smallest normalized number

0 0001_000

1
5
mantissa 2ᵗzero

11 1.000 y z
expbias

bias 2 45
411 11.01.21 7 21411

7

13/31

Table of contents
Floats: Overview
Floats: Normalized numbers

Normalized: exp field
Normalized: frac field
Normalized: example

Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples

Floats: Special cases
Floats: Understanding its design

Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2k→1 → 1?

Floats: Properties
Floating point multiplication

Floats: Summary

14/31

The IEEE 754 number line

–∞ –10 –5 0 +5 +10 +∞

Denormalized Normalized Infinity

Figure: Full picture of number line for floating point values. Image credit CS:APP

–1 –0.8 –0.6 –0.4 –0.2 0 +0.2 +0.4 +0.6 +0.8 +1
Denormalized Normalized Infinity

+0 –0

Figure: Zoomed in number line for floating point values. Image credit CS:APP

15/31

Denormalized: exp field

For denormalized numbers, exp = 0

Bias
↭ need a bias to represent negative

exponents
↭ bias = 2k→1 → 1
↭ bias is the k-bit unsigned integer:

011..111

For denormalized numbers,
E = 1-bias

property float double

k 8 11
bias 127 1023

E -126 -1022

Table: Summary of denormalized exp field

16/31

Denormalized: frac field

M = 0.frac
value represented leading with 0

17/31

Denormalized: examples

largest denormalized number

without special treatment not how it works

0 0000 111

1 11.111 2

11448 its
f to
64 to 1

with special treatment
0 0000 111
115 10 1112 2

11 a'xf zlbias

i 2
6

I 2

4 2 É ft 2

smallest denormalized number

without special treatment not how it works
0 0000 001

t 1.001 20
1 2

G 2 4.2

T.EE fintnitfI

With special treatment
0 0000 00

f 118 10.001 2
bias

1 2
6

I t

18/31

Table of contents
Floats: Overview
Floats: Normalized numbers

Normalized: exp field
Normalized: frac field
Normalized: example

Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples

Floats: Special cases
Floats: Understanding its design

Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2k→1 → 1?

Floats: Properties
Floating point multiplication

Floats: Summary

19/31

Floats: Special cases

number class when it arises exp field frac field

+0 / -0 0 0
+infinity / -infinity overflow or division by 0 2k → 1 0
NaN not-a-number illegal ops. such as

↓
→1, inf-inf, inf*0 2k → 1 non-0

Table: Summary of special cases

Why have both 0.0 and 0.0

1 0000 000

11 10.000 2

0.0

0.0

I 0.0

0 to

20/31

Table of contents
Floats: Overview
Floats: Normalized numbers

Normalized: exp field
Normalized: frac field
Normalized: example

Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples

Floats: Special cases
Floats: Understanding its design

Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2k→1 → 1?

Floats: Properties
Floating point multiplication

Floats: Summary

21/31

Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.
Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

22/31

Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.
Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

23/31

Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.
Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

Consider hypothetical 8-bit floating point format (from the textbook)
1-bit sign, k = 4-bit exp, 3-bit frac.

What is the decimal value of
0b1_0110_111?

What is the decimal value of
0b1_0111_000?

24/31

Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.
Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

Consider hypothetical 8-bit floating point format (from the textbook)
1-bit sign, k = 4-bit exp, 3-bit frac.

What is the decimal value of
0b1_0110_111?
→1.875 ↑ 2→1

What is the decimal value of
0b1_0111_000?
→2.000 ↑ 2→1

25/31

Deep understanding 2: Why have denormalized numbers?

Why not just continue normalized number scheme down to smallest
numbers around zero?
Answer: makes sure that smallest increments available are maintained around
zero.

Suppose denormalized numbers NOT used.

What is the decimal
value of 0b0_0000_001?
1.125 ↑ 2→7

What is the decimal
value of 0b0_0000_111?
1.875 ↑ 2→7

What is the decimal
value of 0b0_0001_000?
2.000 ↑ 2→7

26/31

Deep understanding 2: Why have denormalized numbers?

Why not just continue normalized number scheme down to smallest
numbers around zero?
Answer: makes sure that smallest increments available are maintained around
zero.

Suppose denormalized numbers ARE used.

What is the decimal
value of 0b0_0000_001?
0.125 ↑ 2→6

What is the decimal
value of 0b0_0000_111?
0.875 ↑ 2→6

What is the decimal
value of 0b0_0001_000?
1.000 ↑ 2→6

27/31

Table of contents
Floats: Overview
Floats: Normalized numbers

Normalized: exp field
Normalized: frac field
Normalized: example

Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples

Floats: Special cases
Floats: Understanding its design

Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2k→1 → 1?

Floats: Properties
Floating point multiplication

Floats: Summary

28/31

How to multiply scientific notation?

Recall: log(x ↑ y) = log(x) + log(y)

29/31

Floating point multiplication

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

FP Multiplication
¢ (–1)s1 M1 2E1 x (–1)s2 M2 2E2

¢ Exact Result: (–1)s M 2E

! Sign s: s1 ^ s2
! Significand M: M1 x M2
! Exponent E: E1 + E2

¢ Fixing
! If M ≥ 2, shift M right, increment E
! If E out of range, overflow
! Round M to fit frac precision

¢ Implementation
! Biggest chore is multiplying significands

Figure: Image credit CS:APP

30/31

Table of contents
Floats: Overview
Floats: Normalized numbers

Normalized: exp field
Normalized: frac field
Normalized: example

Floats: Denormalized numbers
Denormalized: exp field
Denormalized: frac field
Denormalized: examples

Floats: Special cases
Floats: Understanding its design

Deep understanding 1: Why is exp field encoded using bias?
Deep understanding 2: Why have denormalized numbers?
Deep understanding 3: Why is bias chosen to be 2k→1 → 1?

Floats: Properties
Floating point multiplication

Floats: Summary

31/31

Floats: Summary

normalized denormalized

value of number (→1)s ↑ M ↑ 2E (→1)s ↑ M ↑ 2E

E E = exp-bias E = -bias + 1
bias 2k→1 → 1 2k→1 → 1
exp 0 < exp < (2k → 1) exp = 0

M M = 1.frac M = 0.frac
M has implied leading 1 M has leading 0

greater range greater precision
large magnitude numbers small magnitude numbers
denser near origin evenly spaced

Table: Summary of normalized and denormalized numbers

Connecting to actual number ranges for

32 bit float and 64 bit double

