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Floating point numbers

Avogadro’s number
+6.02214 ↑ 1023 mol→1

Scientific notation
↭ sign
↭ mantissa or significand
↭ exponent
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Floating point numbers
Before 1985

1. Many floating point systems.
2. Specialized machines such as Cray supercomputers.
3. Some machines with specialized floating point have had to be kept alive to

support legacy software.

After 1985
1. IEEE Standard 754.
2. A floating point standard designed for good numerical properties.
3. Found in almost every computer today, except for tiniest microcontrollers.

Recent
1. Need for both lower precision and higher range floating point numbers.
2. Machine learning / neural networks. Low-precision tensor network

processors.
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Floats and doubles
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Figure: The two standard formats for floating point data types. Image credit CS:APP
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Floats and doubles

property half* float double

total bits 16 32 64
s bit 1 1 1

exp bits 5 8 11
frac bits 10 23 52

C printf() format specifier None "%f" "%lf"

Table: Properties of floats and doubles
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The IEEE 754 number line
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Figure: Full picture of number line for floating point values. Image credit CS:APP
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Figure: Zoomed in number line for floating point values. Image credit CS:APP
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Different cases for floating point numbers
Value of the floating point number = (→1)s ↑ M ↑ 2E

↭ E is encoded the exp field
↭ M is encoded the frac field
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2. Denormalized 
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Figure: Different cases within a floating point format. Image credit CS:APP

Normalized and denormalized numbers
Two different cases we need to consider for the encoding of E, M
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Normalized: exp field

For normalized numbers,
0 < exp < 2k → 1
↭ exp is a k-bit unsigned integer

Bias
↭ need a bias to represent negative

exponents
↭ bias = 2k→1 → 1
↭ bias is the k-bit unsigned integer:

011..111

For normalized numbers,
E = exp-bias
In other words, exp = E+bias

property float double

k 8 11
bias 127 1023

smallest E (greatest precision) -126 -1022
largest E (greatest range) 127 1023

Table: Summary of normalized exp field
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Normalized: frac field

M = 1.frac
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Normalized: example

↭ 12.375 to single-precision floating point
↭ sign is positive so s=0
↭ binary is 1100.0112

↭ in other words it is 1.1000112 ↑ 23

↭ exp = E + bias = 3 + 127 = 130 = 1000_00102

↭ M = 1.1000112 = 1.frac
↭ frac = 100011
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The IEEE 754 number line
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Figure: Full picture of number line for floating point values. Image credit CS:APP
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Figure: Zoomed in number line for floating point values. Image credit CS:APP
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Denormalized: exp field

For denormalized numbers, exp = 0

Bias
↭ need a bias to represent negative

exponents
↭ bias = 2k→1 → 1
↭ bias is the k-bit unsigned integer:

011..111

For denormalized numbers,
E = 1-bias

property float double

k 8 11
bias 127 1023

E -126 -1022

Table: Summary of denormalized exp field
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Denormalized: frac field

M = 0.frac
value represented leading with 0
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Denormalized: examples
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Floats: Special cases

number class when it arises exp field frac field

+0 / -0 0 0
+infinity / -infinity overflow or division by 0 2k → 1 0
NaN not-a-number illegal ops. such as

↓
→1, inf-inf, inf*0 2k → 1 non-0

Table: Summary of special cases



Why have both 0.0 and 0.0
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Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.
Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?
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Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.
Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.
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Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.
Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

Consider hypothetical 8-bit floating point format (from the textbook)
1-bit sign, k = 4-bit exp, 3-bit frac.

What is the decimal value of
0b1_0110_111?

What is the decimal value of
0b1_0111_000?
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Deep understanding 1: Why is exp field encoded using bias?

exp field needs to encode both positive and negative exponents.
Why not just use one of the signed integer formats? 2’s complement, 1s’
complement, signed magnitude?

Answer: allows easy comparison of magnitudes by simply comparing bits.

Consider hypothetical 8-bit floating point format (from the textbook)
1-bit sign, k = 4-bit exp, 3-bit frac.

What is the decimal value of
0b1_0110_111?
→1.875 ↑ 2→1

What is the decimal value of
0b1_0111_000?
→2.000 ↑ 2→1
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Deep understanding 2: Why have denormalized numbers?

Why not just continue normalized number scheme down to smallest
numbers around zero?
Answer: makes sure that smallest increments available are maintained around
zero.

Suppose denormalized numbers NOT used.

What is the decimal
value of 0b0_0000_001?
1.125 ↑ 2→7

What is the decimal
value of 0b0_0000_111?
1.875 ↑ 2→7

What is the decimal
value of 0b0_0001_000?
2.000 ↑ 2→7
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Deep understanding 2: Why have denormalized numbers?

Why not just continue normalized number scheme down to smallest
numbers around zero?
Answer: makes sure that smallest increments available are maintained around
zero.

Suppose denormalized numbers ARE used.

What is the decimal
value of 0b0_0000_001?
0.125 ↑ 2→6

What is the decimal
value of 0b0_0000_111?
0.875 ↑ 2→6

What is the decimal
value of 0b0_0001_000?
1.000 ↑ 2→6
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How to multiply scientific notation?

Recall: log(x ↑ y) = log(x) + log(y)
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Floating point multiplication

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

FP Multiplication
¢ (–1)s1 M1 2E1 x   (–1)s2 M2 2E2

¢ Exact Result: (–1)s M 2E

! Sign s: s1 ^ s2
! Significand M: M1 x M2
! Exponent E: E1 + E2

¢ Fixing
! If M ≥ 2, shift M right, increment E
! If E out of range, overflow 
! Round M to fit frac precision

¢ Implementation
! Biggest chore is multiplying significands

Figure: Image credit CS:APP
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Floats: Summary

normalized denormalized

value of number (→1)s ↑ M ↑ 2E (→1)s ↑ M ↑ 2E

E E = exp-bias E = -bias + 1
bias 2k→1 → 1 2k→1 → 1
exp 0 < exp < (2k → 1) exp = 0

M M = 1.frac M = 0.frac
M has implied leading 1 M has leading 0

greater range greater precision
large magnitude numbers small magnitude numbers
denser near origin evenly spaced

Table: Summary of normalized and denormalized numbers



Connecting to actual number ranges for

32 bit float and 64 bit double


