The basics of logic design: Combinational and sequential logic

Yipeng Huang

Rutgers University

December 4, 2025

```
Table of contents
    Announcements
    Transistors: The building block of computers
    Combinational logic
       Basic gates
       More-than-2-input gates
   Functional completeness
```

The set of logic gates {NOT, AND, OR} is universal

The NAND gate is universal

The NOR gate is universal

Combinational logic

Decoders

Multiplexers

PA6 Demo code: directMapped read logic

Sequential logic

SR latch

SRAM cell

Announcements

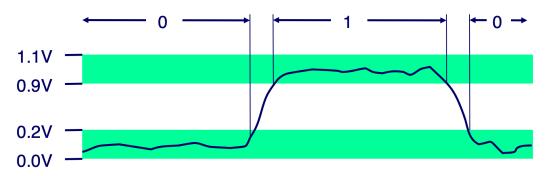
Class session plan

- ► Thursday, 12/4: Diving deeper: Digital logic. (CS:APP Chapter 4.2) (Recommended reading: Patterson & Hennessy, Computer organization and design, appendix on "The Basics of Logic Design." Available online via Rutgers Libraries)
- ► Tuesday, 12/9: Survey of advanced topics in (quantum) computer architecture.
- ► Thursday, 12/18: 16:00-19:00, Hill 114, closed book, closed notes, no electronic devices, no calculator final exam. Practice exam already posted under Canvas -> class files -> exams.

```
Table of contents
    Announcements
    Transistors: The building block of computers
    Combinational logic
       Basic gates
       More-than-2-input gates
    Functional completeness
       The set of logic gates {NOT, AND, OR} is universal
       The NAND gate is universal
       The NOR gate is universal
    Combinational logic
       Decoders
       Multiplexers
   PA6 Demo code: directMapped read logic
   Sequential logic
       SR latch
```

SRAM cell

Computer organization


Layer cake

- Society
- Human beings
- Applications
- Algorithms
- High-level programming languages
- Interpreters
- Low-level programming languages
- Compilers
- Architectures
- Microarchitectures
- Sequential/combinational logic
- Transistors
- Semiconductors
- Materials science

Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires

To build logic, we need switches

Vacuum tubes a.k.a. valves

Figure: Source: By Stefan Riepl (Quark48) - Self-photographed, CC BY-SA 2.0

https://commons.wikimedia.org/w/index.php?curid=14682022

Transistors

- ► The first transistor. Developed at Bell Labs, Murray Hill, New Jeresy

MOSFETs

MOS: Metal-oxide-semiconductor

► A sandwich of conductor-insulator-semiconductor.

FET: Field-effect transistor

► Gate exerts electric field that changes conductivity of semiconductor.

NMOS, PMOS, CMOS

PMOS: P-type MOS

- positive gate voltage, acts as open circuit (insulator)
- negative gate voltage, acts as short circuit (conductor)

NMOS: N-type MOS

- positive gate voltage, acts as short circuit (conductor)
- negative gate voltage, acts as open circuit (insulator)

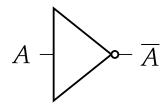
CMOS: Complementary MOS

- A combination of NMOS and PMOS to build logical gates such as NOT, AND, OR.
- We'll go to slides posted in supplementary material to see how they work.

Combinational vs. sequential logic

Combinational logic

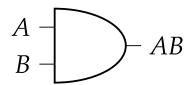
- ► No internal state nor memory
- Output depends entirely on input
- Examples: NOT, AND, NAND, OR, NOR, XOR, XNOR gates, decoders, multiplexers.


Sequential logic

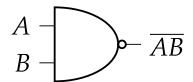
- Has internal state (memory)
- Output depends on the inputs and also internal state
- Examples: latches, flip-flops, Mealy and Moore machines, registers, pipelines, SRAMs.

```
Table of contents
    Announcements
    Transistors: The building block of computers
    Combinational logic
       Basic gates
       More-than-2-input gates
    Functional completeness
       The set of logic gates {NOT, AND, OR} is universal
       The NAND gate is universal
       The NOR gate is universal
    Combinational logic
       Decoders
       Multiplexers
   PA6 Demo code: directMapped read logic
   Sequential logic
       SR latch
```

SRAM cell


NOT gate

\boldsymbol{A}	\overline{A}
0	1
1	0


Table: Truth table for NOT gate

AND gate, NAND gate

\boldsymbol{A}	В	AB
0	0	0
0	1	0
1	0	0
1	1	1

Table: Truth table for AND gate

\boldsymbol{A}	В	\overline{AB}
0	0	1
0	1	1
1	0	1
1	1	0

Table: Truth table for NAND gate

OR gate, NOR gate

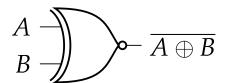
$$A \longrightarrow A + B$$

\boldsymbol{A}	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1


Table: Truth table for OR gate

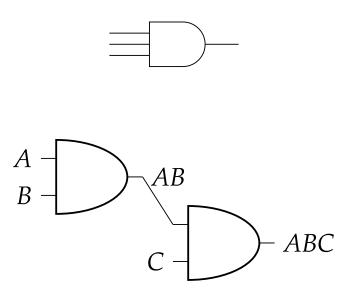
$$A \longrightarrow A \longrightarrow A + B$$

\boldsymbol{A}	В	$\overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0


Table: Truth table for NOR gate

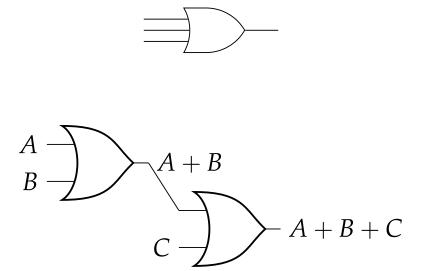
XOR gate, XNOR gate

\boldsymbol{A}	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0


Table: Truth table for XOR gate

\boldsymbol{A}	В	$\overline{A \oplus B}$
0	0	1
0	1	0
1	0	0
1	1	1

Table: Truth table for XNOR gate


More-than-2-input AND gate

\boldsymbol{A}	B	C	ABC
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Table: Truth table for three-input AND gate

More-than-2-input OR gate

A	В	C	A+B+C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Table: Truth table for three-input OR gate

```
Table of contents
    Announcements
    Transistors: The building block of computers
    Combinational logic
       Basic gates
       More-than-2-input gates
    Functional completeness
       The set of logic gates {NOT, AND, OR} is universal
       The NAND gate is universal
       The NOR gate is universal
    Combinational logic
       Decoders
       Multiplexers
   PA6 Demo code: directMapped read logic
   Sequential logic
       SR latch
```

SRAM cell

The set of logic gates {NOT, AND, OR} is universal

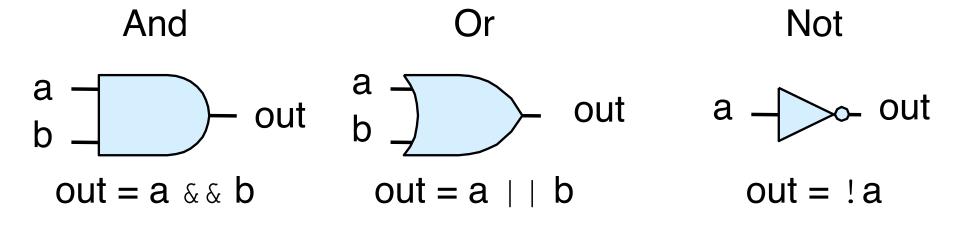
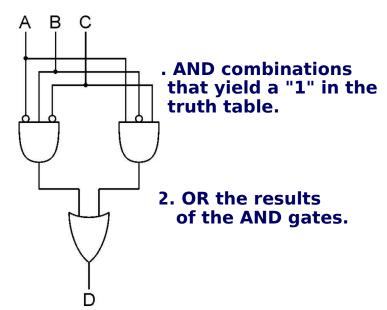


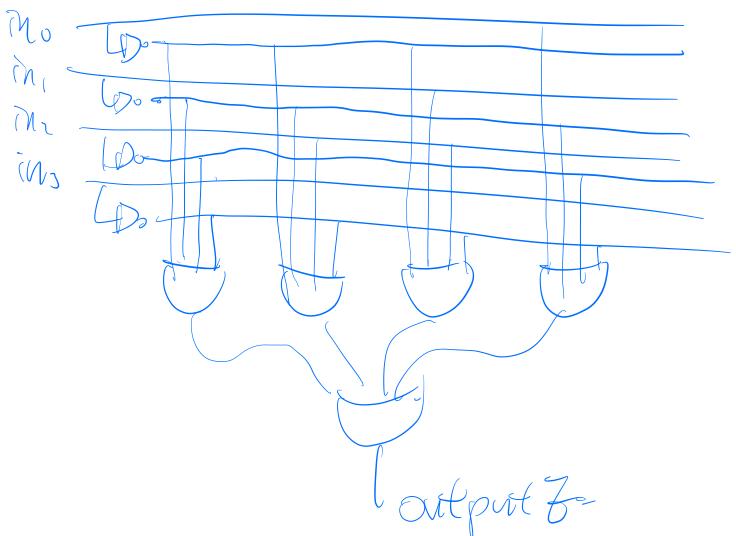
Figure: Source: CS:APP

The set of logic gates {NOT, AND, OR} is universal

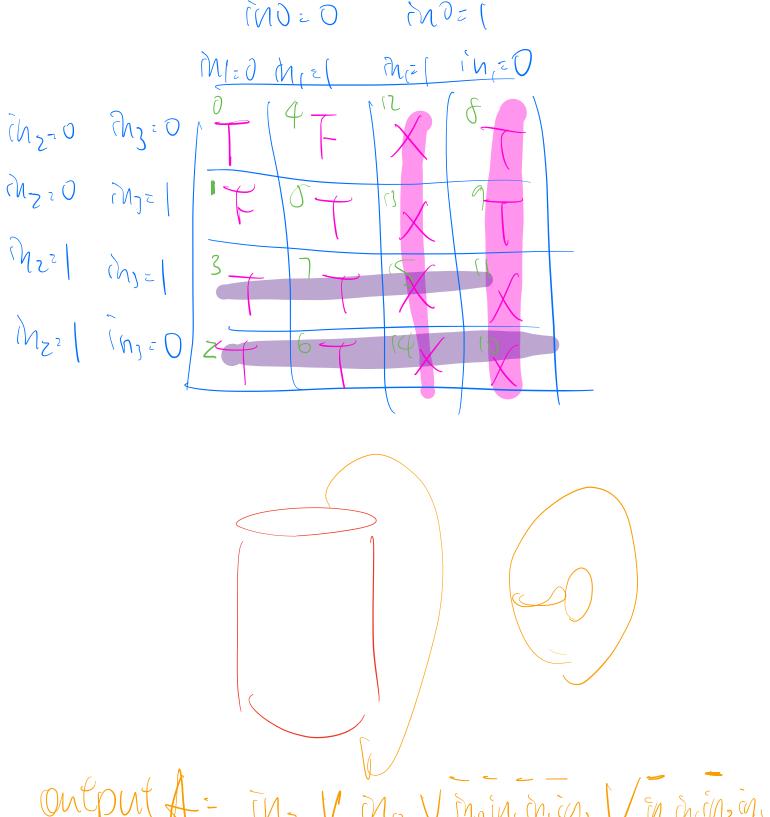

- Any truth table can be expressed as sum of products form.
- Write each row with output 1 as a product (minterm).
- Sum the products (minterm).
- Forms a disjunctive normal form (DNF).
- $D = \overline{A}B\overline{C} + A\overline{B}C$
- Always only needs NOT, AND, OR gates.
- Supplementary slides example...

Logical Completeness

Can implement ANY truth table with AND, OR, NOT.


A	В	С	D
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Sum of products OR of AND clauses


E: 0, Z, 6, 8 Pupul [3:0] ino in, in, ins output 6

Owlpal F:
Moin, in zin, Vinoin, in in Moments V Modu, in zin

Moin, Mz ins/ ontput C output C = (Mo V Mo V Mo V Mo) / 1 ...

ONTPUT A 345678901213

Output A: Ins V moin, in, in, in, in, insh, inson,

The set of logic gates {NOT, AND, OR} is universal

- Any truth table can be expressed as sum of products form.
- Write each row with output 1 as a product (minterm).
- Sum the products (minterm).
- Forms a disjunctive normal form (DNF).
- $D = \overline{A}B\overline{C} + A\overline{B}C$
- Always only needs NOT, AND, OR gates.
- Supplementary slides example...

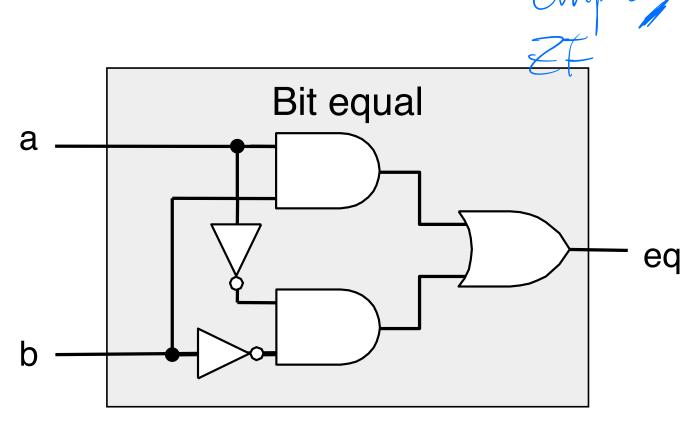
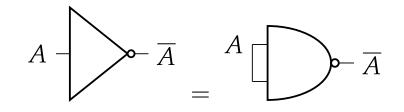
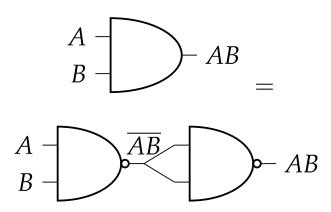



Figure: Source: CS:APP

The NAND gate is universal

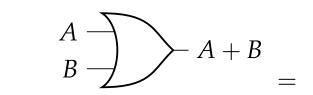

NOT gate as a single NAND gate

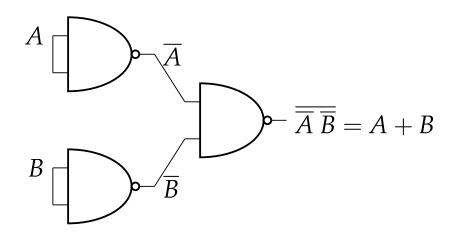
\boldsymbol{A}	\overline{A}	AA	\overline{AA}
0	1	0	1
1	0	1	0

Table: $\overline{A} = \overline{AA}$

AND gate as two NAND gates

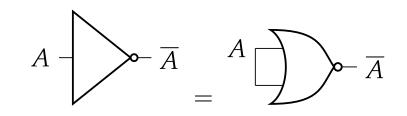
A	В	AB	\overline{AB}	$\overline{\overline{AB}}$
0	0	0	1	0
0	1	0	1	0
1	0	0	1	0
1	1	1	0	1


The NAND gate is universal

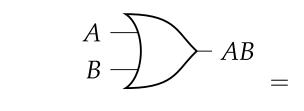

De Morgan's Law

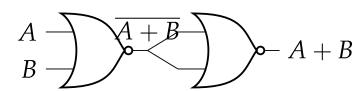
A	В	\overline{A}	\overline{B}	$\overline{A} \ \overline{B}$	A + B	$\overline{A+B}$
0	0	1	1	1	0	1
0	1	1	0	0	1	0
1	0	0	1	0	1	0
1	1	0	0	0	$egin{array}{ c c c c } A + B & & & & \\ \hline 0 & & & & \\ 1 & & & & \\ 1 & & & & \\ 1 & & & &$	0

Table: $\overline{A} \ \overline{B} = \overline{A + B}$


OR gate as three NAND gates

The NOR gate is universal


NOT gate as a single NOR gate

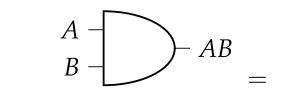


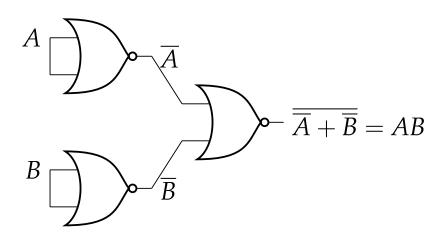
\boldsymbol{A}	\overline{A}	A+A	$\overline{A+A}$
0	1 0	0	1
1	0	1	0

Table:
$$\overline{A} = \overline{A + A}$$

OR gate as two NOR gates

	A	R	A + B	A+B	${\overline{A+B}}$
,	0	0	0	1	$\frac{21+D}{0}$
	0	1	1	0	1
	1	\cap	1	0	1
	1	1	1	0	1


The NOR gate is universal


De Morgan's Law

\boldsymbol{A}	B	\overline{A}	\overline{B}	$\overline{A} + \overline{B}$	AB	\overline{AB}
0	0	1	1	1	0	
0	1	1	0	1	0	1
1	0	0	1	1	0	1
1	1	0	0	1 1 1 1 0	1	0

Table: $\overline{A} + \overline{B} = \overline{AB}$

AND gate as three NOR gates

Combinational vs. sequential logic

Combinational logic

- ► No internal state nor memory
- Output depends entirely on input
- Examples: NOT, AND, NAND, OR, NOR, XOR, XNOR gates, decoders, multiplexers.

Sequential logic

- Has internal state (memory)
- Output depends on the inputs and also internal state
- Examples: latches, flip-flops, Mealy and Moore machines, registers, pipelines, SRAMs.

```
Table of contents
    Announcements
    Transistors: The building block of computers
    Combinational logic
       Basic gates
       More-than-2-input gates
    Functional completeness
       The set of logic gates {NOT, AND, OR} is universal
       The NAND gate is universal
       The NOR gate is universal
    Combinational logic
       Decoders
       Multiplexers
   PA6 Demo code: directMapped read logic
   Sequential logic
       SR latch
```

SRAM cell

Decoders

Takes n-bit input, uses it as an index to enable exactly one of 2^n outputs

Internal design of 1:2 decoder

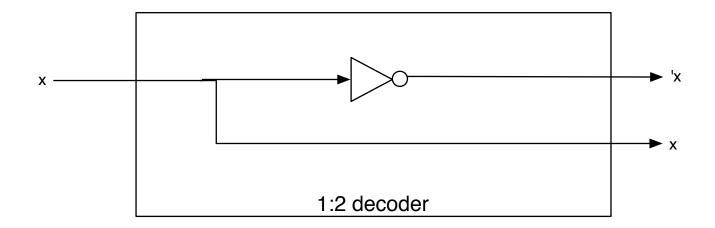
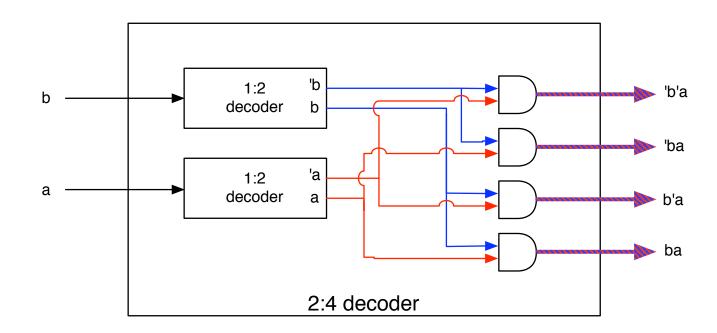


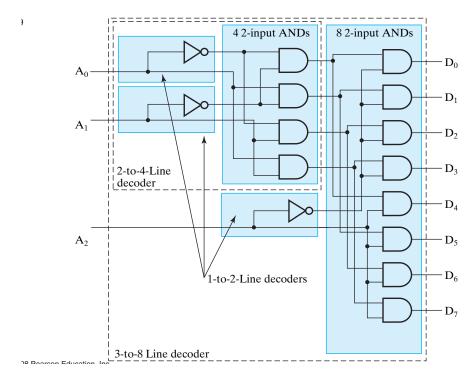
Figure: Source: Mano & Kime

Decoders

Hierarchical design of decoder (2:4 decoder)

Takes n-bit input, uses it as an index to enable exactly one of 2^n outputs




Figure: Source: Mano & Kime

Decoders

Takes n-bit input, uses it as an index to enable exactly one of 2^n outputs

Decoder (3:8)

Hierarchical design: use small decoders to build bigger decoder

Note: A₂ "selects" whether the 2-to-4 line decoder is active in the top half (A₂=0) or the bottom (A₂=1)

Figure: Source: Mano & Kime

$$\begin{array}{c} + & S & b \\ & S = Z \\ & S = Z \end{array}$$

Multiplexers

Using n-bit selector input, select among one of 2ⁿ choices

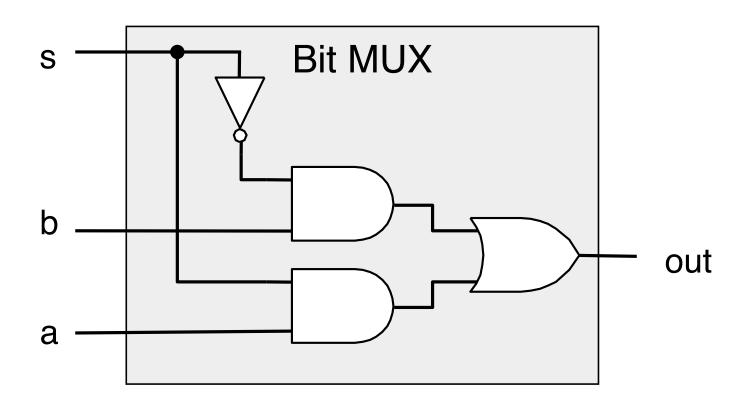


Figure: Source: CS:APP

Multiplexers

Using n-bit selector input, select among one of 2ⁿ choices

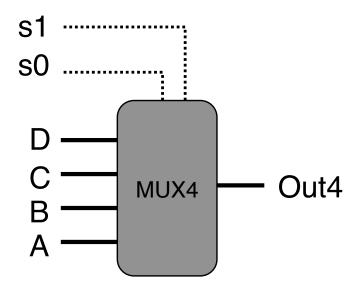


Figure: Source: CS:APP

SEZ
SELOB
SE

moub (\$100), \$100 Fread address Sef_0_ Jaha + set_0_ tag Jet O. block se(21 _ uahd f sel. 1-ten of Set_(.block

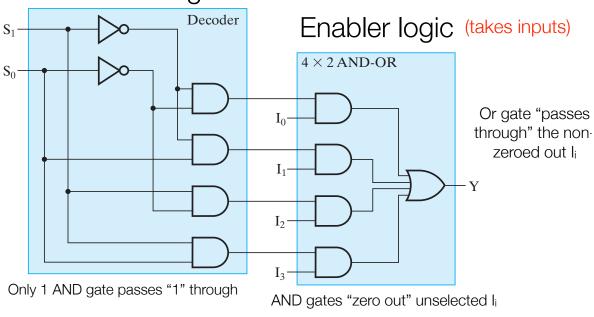
total cop: SXEXB

= ZXIXI = Zbyte

S=Zs=Z1

rend_addr [1=0]: Wire
-t=1 5=1 b=0 ase

wire tay: cossign tay: read-addrt1];


Multiplexers

wine set index; as sing selectors pendended [0];

Internal mux organization

3-26

Selector Logic (selects which input "flows through")

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

Using n-bit selector input, select among one of 2ⁿ choices

```
Table of contents
    Announcements
    Transistors: The building block of computers
    Combinational logic
       Basic gates
       More-than-2-input gates
    Functional completeness
       The set of logic gates {NOT, AND, OR} is universal
       The NAND gate is universal
       The NOR gate is universal
    Combinational logic
       Decoders
       Multiplexers
   PA6 Demo code: directMapped read logic
   Sequential logic
       SR latch
```

SRAM cell

directMapped read logic

```
Table of contents
    Announcements
    Transistors: The building block of computers
    Combinational logic
       Basic gates
       More-than-2-input gates
    Functional completeness
       The set of logic gates {NOT, AND, OR} is universal
       The NAND gate is universal
       The NOR gate is universal
    Combinational logic
       Decoders
       Multiplexers
   PA6 Demo code: directMapped read logic
   Sequential logic
       SR latch
```

SRAM cell

Sequential logic

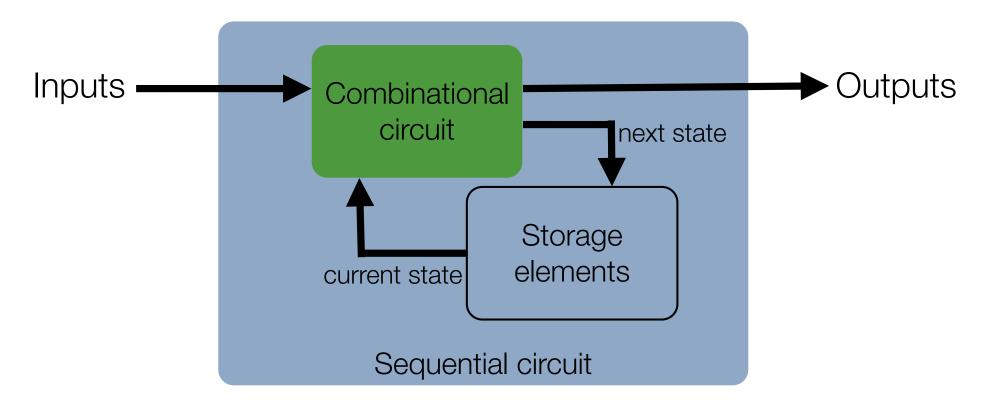


Figure: Source: Mano & Kime

The simplest sequential logic element: The set/reset (SR) latch SR latch

Latch constructed of cross-coupled NOR gates



Figure: Source: Mano & Kime

The simplest sequential logic element: The set/reset (SR) latch

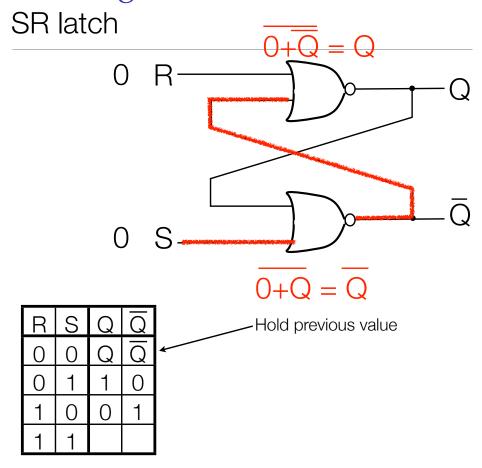


Figure: Source: Mano & Kime

6 transistor SRAM cell

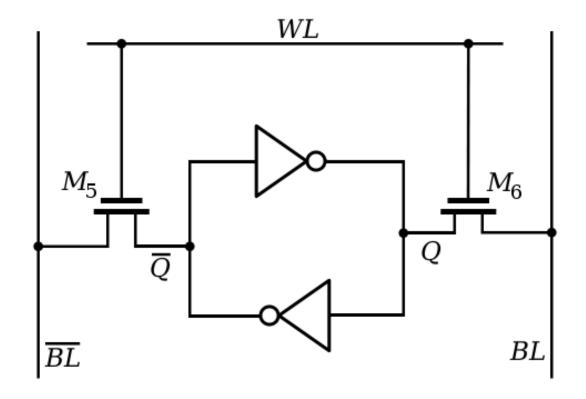
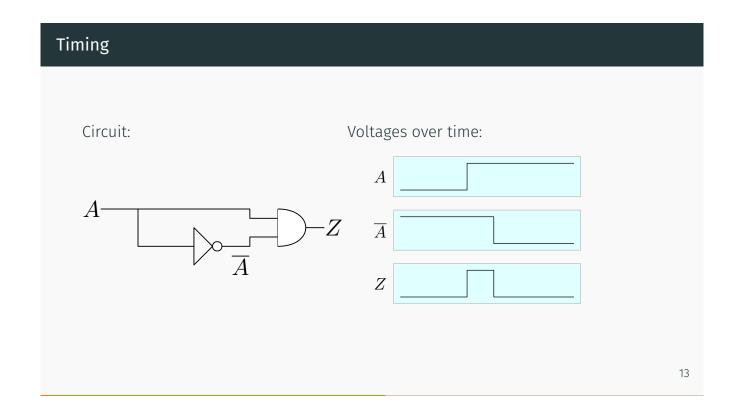



Figure: Source: Wikimedia

Asynchronous / Synchronous circuits

